BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33187802)

  • 1. Novel insights into biodegradation, interaction, internalization and impacts of high-aspect-ratio TiO
    Alaraby M; Hernández A; Marcos R
    J Hazard Mater; 2021 May; 409():124474. PubMed ID: 33187802
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Demir E
    J Toxicol Environ Health A; 2020 Jun; 83(11-12):456-469. PubMed ID: 32515692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic in vivo study of NiO nanowires and nanospheres: biodegradation, uptake and biological impacts.
    Alaraby M; Hernández A; Marcos R
    Nanotoxicology; 2018 Nov; 12(9):1027-1044. PubMed ID: 30253711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila.
    Carmona ER; Escobar B; Vales G; Marcos R
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Jan; 778():12-21. PubMed ID: 25726144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions.
    Mahapatra C; Singh RK; Lee JH; Jung J; Hyun JK; Kim HW
    Acta Biomater; 2017 Mar; 50():142-153. PubMed ID: 27940193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress and genotoxicity of an organic and an inorganic nanomaterial to Eisenia andrei: SDS/DDAB nano-vesicles and titanium silicon oxide.
    Correia B; Lourenço J; Marques S; Nogueira V; Gavina A; da Graça Rasteiro M; Antunes F; Mendo S; Pereira R
    Ecotoxicol Environ Saf; 2017 Jun; 140():198-205. PubMed ID: 28260685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions.
    Louro H
    Adv Exp Med Biol; 2018; 1048():123-142. PubMed ID: 29453536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo genotoxicity assessment of titanium, zirconium and aluminium nanoparticles, and their microparticulated forms, in Drosophila.
    Demir E; Turna F; Vales G; Kaya B; Creus A; Marcos R
    Chemosphere; 2013 Nov; 93(10):2304-10. PubMed ID: 24095613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of differently shaped TiO
    García-Rodríguez A; Vila L; Cortés C; Hernández A; Marcos R
    Part Fibre Toxicol; 2018 Aug; 15(1):33. PubMed ID: 30086772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomaterials induce DNA-protein crosslink and DNA oxidation: A mechanistic study with RTG-2 fish cell line and Comet assay modifications.
    Klingelfus T; Disner GR; Voigt CL; Alle LF; Cestari MM; Leme DM
    Chemosphere; 2019 Jan; 215():703-709. PubMed ID: 30347365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of
    Ng CT; Yu LE; Ong CN; Bay BH; Baeg GH
    Nanotoxicology; 2019 May; 13(4):429-446. PubMed ID: 30451554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium.
    Tay CY; Fang W; Setyawati MI; Chia SL; Tan KS; Hong CH; Leong DT
    ACS Appl Mater Interfaces; 2014 May; 6(9):6248-56. PubMed ID: 24734929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model.
    Alaraby M; Hernández A; Annangi B; Demir E; Bach J; Rubio L; Creus A; Marcos R
    Nanotoxicology; 2015; 9(6):749-59. PubMed ID: 25358738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigenotoxic potential of boron nitride nanotubes.
    Demir E; Marcos R
    Nanotoxicology; 2018 Oct; 12(8):868-884. PubMed ID: 29952680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic effects of two rutile TiO
    Jalili P; Krause BC; Lanceleur R; Burel A; Jungnickel H; Lampen A; Laux P; Luch A; Fessard V; Hogeveen K
    Part Fibre Toxicol; 2022 May; 19(1):37. PubMed ID: 35578293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential health challenges of TiO2 nanomaterials.
    Sha B; Gao W; Cui X; Wang L; Xu F
    J Appl Toxicol; 2015 Oct; 35(10):1086-101. PubMed ID: 26179748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress.
    Sha B; Gao W; Wang S; Li W; Liang X; Xu F; Lu TJ
    Food Chem Toxicol; 2013 Aug; 58():280-8. PubMed ID: 23665316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials.
    Demir E; Demir FT; Marcos R
    Adv Exp Med Biol; 2022; 1357():275-301. PubMed ID: 35583649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test.
    Reis Éde M; Rezende AA; Oliveira PF; Nicolella HD; Tavares DC; Silva AC; Dantas NO; Spanó MA
    Food Chem Toxicol; 2016 Oct; 96():309-19. PubMed ID: 27562929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes.
    Jovanović B; Cvetković VJ; Mitrović TLj
    Chemosphere; 2016 Feb; 144():43-9. PubMed ID: 26344147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.