These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 33187878)

  • 1. Many facades of CTCF unified by its coding for three-dimensional genome architecture.
    Wu Q; Liu P; Wang L
    J Genet Genomics; 2020 Aug; 47(8):407-424. PubMed ID: 33187878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection.
    Jia Z; Li J; Ge X; Wu Y; Guo Y; Wu Q
    Genome Biol; 2020 Mar; 21(1):75. PubMed ID: 32293525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Interaction between the SWI/SNF Chromatin Remodeling Complex and the Zinc Finger Factor CTCF.
    Valletta M; Russo R; Baglivo I; Russo V; Ragucci S; Sandomenico A; Iaccarino E; Ruvo M; De Feis I; Angelini C; Iachettini S; Biroccio A; Pedone PV; Chambery A
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pushing the TAD boundary: Decoding insulator codes of clustered CTCF sites in 3D genomes.
    Huang H; Wu Q
    Bioessays; 2024 Oct; 46(10):e2400121. PubMed ID: 39169755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZNF143 deletion alters enhancer/promoter looping and CTCF/cohesin geometry.
    Zhang M; Huang H; Li J; Wu Q
    Cell Rep; 2024 Jan; 43(1):113663. PubMed ID: 38206813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells.
    Degner SC; Verma-Gaur J; Wong TP; Bossen C; Iverson GM; Torkamani A; Vettermann C; Lin YC; Ju Z; Schulz D; Murre CS; Birshtein BK; Schork NJ; Schlissel MS; Riblet R; Murre C; Feeney AJ
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9566-71. PubMed ID: 21606361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.
    Vos ESM; Valdes-Quezada C; Huang Y; Allahyar A; Verstegen MJAM; Felder AK; van der Vegt F; Uijttewaal ECH; Krijger PHL; de Laat W
    Mol Cell; 2021 Aug; 81(15):3082-3095.e6. PubMed ID: 34197738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention.
    Pugacheva EM; Kubo N; Loukinov D; Tajmul M; Kang S; Kovalchuk AL; Strunnikov AV; Zentner GE; Ren B; Lobanenkov VV
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2020-2031. PubMed ID: 31937660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeable TAD boundaries and their impact on genome-associated functions.
    Chang LH; Noordermeer D
    Bioessays; 2024 Oct; 46(10):e2400137. PubMed ID: 39093600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes.
    Rinzema NJ; Sofiadis K; Tjalsma SJD; Verstegen MJAM; Oz Y; Valdes-Quezada C; Felder AK; Filipovska T; van der Elst S; de Andrade Dos Ramos Z; Han R; Krijger PHL; de Laat W
    Nat Struct Mol Biol; 2022 Jun; 29(6):563-574. PubMed ID: 35710842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CTCF: a Swiss-army knife for genome organization and transcription regulation.
    Braccioli L; de Wit E
    Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional genome architectural CCCTC-binding factor makes choice in duplicated enhancers at Pcdhα locus.
    Wu Y; Jia Z; Ge X; Wu Q
    Sci China Life Sci; 2020 Jun; 63(6):835-844. PubMed ID: 32249388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute quantification of cohesin, CTCF and their regulators in human cells.
    Holzmann J; Politi AZ; Nagasaka K; Hantsche-Grininger M; Walther N; Koch B; Fuchs J; Dürnberger G; Tang W; Ladurner R; Stocsits RR; Busslinger GA; Novák B; Mechtler K; Davidson IF; Ellenberg J; Peters JM
    Elife; 2019 Jun; 8():. PubMed ID: 31204999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin insulator mechanisms ensure accurate gene expression by controlling overall 3D genome organization.
    Bhattacharya M; Lyda SF; Lei EP
    Curr Opin Genet Dev; 2024 Aug; 87():102208. PubMed ID: 38810546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulators and domains of gene expression.
    Ali T; Renkawitz R; Bartkuhn M
    Curr Opin Genet Dev; 2016 Apr; 37():17-26. PubMed ID: 26802288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the choreography of genome folding: A grand pas de deux of cohesin and CTCF.
    van Ruiten MS; Rowland BD
    Curr Opin Cell Biol; 2021 Jun; 70():84-90. PubMed ID: 33545664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CTCF shapes chromatin structure and gene expression in health and disease.
    Dehingia B; Milewska M; Janowski M; Pękowska A
    EMBO Rep; 2022 Sep; 23(9):e55146. PubMed ID: 35993175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CTCF: the protein, the binding partners, the binding sites and their chromatin loops.
    Holwerda SJ; de Laat W
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1620):20120369. PubMed ID: 23650640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.