These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33187982)

  • 41. Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms.
    Lo WS; Gamache ER; Henry KW; Yang D; Pillus L; Berger SL
    EMBO J; 2005 Mar; 24(5):997-1008. PubMed ID: 15719021
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide analysis of the relationship between transcriptional regulation by Rpd3p and the histone H3 and H4 amino termini in budding yeast.
    Sabet N; Volo S; Yu C; Madigan JP; Morse RH
    Mol Cell Biol; 2004 Oct; 24(20):8823-33. PubMed ID: 15456858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional and physical interactions between yeast 14-3-3 proteins, acetyltransferases, and deacetylases in response to DNA replication perturbations.
    Lottersberger F; Panza A; Lucchini G; Longhese MP
    Mol Cell Biol; 2007 May; 27(9):3266-81. PubMed ID: 17339336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The spatial regulation of condensin activity in chromosome condensation.
    Lamothe R; Costantino L; Koshland DE
    Genes Dev; 2020 Jun; 34(11-12):819-831. PubMed ID: 32354834
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair.
    Tamburini BA; Tyler JK
    Mol Cell Biol; 2005 Jun; 25(12):4903-13. PubMed ID: 15923609
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glucose and nitrogen regulate the switch from histone deacetylation to acetylation for expression of early meiosis-specific genes in budding yeast.
    Pnueli L; Edry I; Cohen M; Kassir Y
    Mol Cell Biol; 2004 Jun; 24(12):5197-208. PubMed ID: 15169885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding.
    Lavoie BD; Hogan E; Koshland D
    Genes Dev; 2004 Jan; 18(1):76-87. PubMed ID: 14701879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern.
    Braunstein M; Sobel RE; Allis CD; Turner BM; Broach JR
    Mol Cell Biol; 1996 Aug; 16(8):4349-56. PubMed ID: 8754835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A simple biophysical model emulates budding yeast chromosome condensation.
    Cheng TM; Heeger S; Chaleil RA; Matthews N; Stewart A; Wright J; Lim C; Bates PA; Uhlmann F
    Elife; 2015 Apr; 4():e05565. PubMed ID: 25922992
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analyzing Top2 distribution on yeast chromosomes by chromatin immunoprecipitation.
    Baldwin M; Warsi T; Bachant J
    Methods Mol Biol; 2009; 582():119-30. PubMed ID: 19763946
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin.
    Kawashima SA; Yamagishi Y; Honda T; Ishiguro K; Watanabe Y
    Science; 2010 Jan; 327(5962):172-7. PubMed ID: 19965387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4.
    Utley RT; Lacoste N; Jobin-Robitaille O; Allard S; Côté J
    Mol Cell Biol; 2005 Sep; 25(18):8179-90. PubMed ID: 16135807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The yeast 14-3-3 proteins BMH1 and BMH2 differentially regulate rapamycin-mediated transcription.
    Trembley MA; Berrus HL; Whicher JR; Humphrey-Dixon EL
    Biosci Rep; 2014 Apr; 34(2):. PubMed ID: 27919033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell-Cycle Regulation of Dynamic Chromosome Association of the Condensin Complex.
    Thadani R; Kamenz J; Heeger S; Muñoz S; Uhlmann F
    Cell Rep; 2018 May; 23(8):2308-2317. PubMed ID: 29791843
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation.
    Shin HJ; Baek KH; Jeon AH; Kim SJ; Jang KL; Sung YC; Kim CM; Lee CW
    Oncogene; 2003 Jun; 22(25):3853-8. PubMed ID: 12813458
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
    Khan AN; Lewis PN
    J Biol Chem; 2006 Apr; 281(17):11702-11. PubMed ID: 16520376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-step model for condensin activation during mitotic chromosome condensation.
    Bazile F; St-Pierre J; D'Amours D
    Cell Cycle; 2010 Aug; 9(16):3243-55. PubMed ID: 20703077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin.
    Hirota T; Lipp JJ; Toh BH; Peters JM
    Nature; 2005 Dec; 438(7071):1176-80. PubMed ID: 16222244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae.
    Hachinohe M; Hanaoka F; Masumoto H
    Genes Cells; 2011 Apr; 16(4):467-77. PubMed ID: 21401809
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4.
    Krogan NJ; Baetz K; Keogh MC; Datta N; Sawa C; Kwok TC; Thompson NJ; Davey MG; Pootoolal J; Hughes TR; Emili A; Buratowski S; Hieter P; Greenblatt JF
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13513-8. PubMed ID: 15353583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.