These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 33187992)
1. Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome. Wu H; Ioannou E; Henrissat B; Montanier CY; Bozonnet S; O'Donohue MJ; Dumon C Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33187992 [TBL] [Abstract][Full Text] [Related]
2. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Zhang M; Chekan JR; Dodd D; Hong PY; Radlinski L; Revindran V; Nair SK; Mackie RI; Cann I Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3708-17. PubMed ID: 25136124 [TBL] [Abstract][Full Text] [Related]
3. Exploring Multimodularity in Plant Cell Wall Deconstruction: STRUCTURAL AND FUNCTIONAL ANALYSIS OF Xyn10C CONTAINING THE CBM22-1-CBM22-2 TANDEM. Sainz-Polo MA; González B; Menéndez M; Pastor FI; Sanz-Aparicio J J Biol Chem; 2015 Jul; 290(28):17116-30. PubMed ID: 26001782 [TBL] [Abstract][Full Text] [Related]
4. Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity. Kitamoto M; Tokuda G; Watanabe H; Arioka M Carbohydr Res; 2019 Feb; 474():1-7. PubMed ID: 30665024 [TBL] [Abstract][Full Text] [Related]
5. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. Despres J; Forano E; Lepercq P; Comtet-Marre S; Jubelin G; Chambon C; Yeoman CJ; Berg Miller ME; Fields CJ; Martens E; Terrapon N; Henrissat B; White BA; Mosoni P BMC Genomics; 2016 May; 17():326. PubMed ID: 27142817 [TBL] [Abstract][Full Text] [Related]
6. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388 [TBL] [Abstract][Full Text] [Related]
7. Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) and the characterization of a multimodular β-1,4-xylanase (GH11). Rashamuse K; Sanyika Tendai W; Mathiba K; Ngcobo T; Mtimka S; Brady D Biotechnol Appl Biochem; 2017 Mar; 64(2):174-186. PubMed ID: 26790627 [TBL] [Abstract][Full Text] [Related]
8. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Romero Victorica M; Soria MA; Batista-García RA; Ceja-Navarro JA; Vikram S; Ortiz M; Ontañon O; Ghio S; Martínez-Ávila L; Quintero García OJ; Etcheverry C; Campos E; Cowan D; Arneodo J; Talia PM Sci Rep; 2020 Mar; 10(1):3864. PubMed ID: 32123275 [TBL] [Abstract][Full Text] [Related]
9. Molecular insight into a new low-affinity xylan binding module from the xylanolytic gut symbiont Roseburia intestinalis. Leth ML; Ejby M; Madland E; Kitaoku Y; Slotboom DJ; Guskov A; Aachmann FL; Abou Hachem M FEBS J; 2020 May; 287(10):2105-2117. PubMed ID: 31693302 [TBL] [Abstract][Full Text] [Related]
10. Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Bolam DN; Xie H; White P; Simpson PJ; Hancock SM; Williamson MP; Gilbert HJ Biochemistry; 2001 Feb; 40(8):2468-77. PubMed ID: 11327868 [TBL] [Abstract][Full Text] [Related]
11. Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System. Fredriksen L; Stokke R; Jensen MS; Westereng B; Jameson JK; Steen IH; Eijsink VGH Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635385 [TBL] [Abstract][Full Text] [Related]
12. Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11. Emami K; Nagy T; Fontes CM; Ferreira LM; Gilbert HJ J Bacteriol; 2002 Aug; 184(15):4124-33. PubMed ID: 12107129 [TBL] [Abstract][Full Text] [Related]
13. A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. Kmezik C; Mazurkewich S; Meents T; McKee LS; Idström A; Armeni M; Savolainen O; Brändén G; Larsbrink J J Biol Chem; 2021; 296():100500. PubMed ID: 33667545 [TBL] [Abstract][Full Text] [Related]
14. Identification of GH10 xylanases in strains 2 and Mz5 of Pseudobutyrivibrio xylanivorans. Grilli DJ; Kopečný J; Mrázek J; Marinšek-Logar R; Paez Lama S; Escudero MS; Arenas GN Folia Microbiol (Praha); 2014 Nov; 59(6):507-14. PubMed ID: 24942109 [TBL] [Abstract][Full Text] [Related]
15. Characterizing a Halo-Tolerant GH10 Xylanase from Teo SC; Liew KJ; Shamsir MS; Chong CS; Bruce NC; Chan KG; Goh KM Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31075847 [TBL] [Abstract][Full Text] [Related]
16. Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain. Han Q; Liu N; Robinson H; Cao L; Qian C; Wang Q; Xie L; Ding H; Wang Q; Huang Y; Li J; Zhou Z Biotechnol Bioeng; 2013 Dec; 110(12):3093-103. PubMed ID: 23794438 [TBL] [Abstract][Full Text] [Related]
17. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24. Kim DY; Lee SH; Lee MJ; Cho HY; Lee JS; Rhee YH; Shin DH; Son KH; Park HY Int J Biol Macromol; 2018 Jan; 106():620-628. PubMed ID: 28813686 [TBL] [Abstract][Full Text] [Related]
18. Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. Liu S; Ding S BMC Biotechnol; 2016 Oct; 16(1):73. PubMed ID: 27770795 [TBL] [Abstract][Full Text] [Related]
19. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. Santos CR; Hoffmam ZB; de Matos Martins VP; Zanphorlin LM; de Paula Assis LH; Honorato RV; Lopes de Oliveira PS; Ruller R; Murakami MT J Biol Chem; 2014 Nov; 289(46):32186-32200. PubMed ID: 25266726 [TBL] [Abstract][Full Text] [Related]
20. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi. Miao Y; Li P; Li G; Liu D; Druzhinina IS; Kubicek CP; Shen Q; Zhang R Environ Microbiol; 2017 Mar; 19(3):1054-1064. PubMed ID: 27878934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]