BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3318802)

  • 1. Driving force for peptide transport in mammalian intestine and kidney.
    Ganapathy V; Miyamoto Y; Leibach FH
    Beitr Infusionther Klin Ernahr; 1987; 17():54-68. PubMed ID: 3318802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate absorption. Studies on the glucose transport by isolated brush border membranes. A contribution towards an understanding of the molecular mechanism of sugar absorption.
    Hopper U
    Bibl Nutr Dieta; 1975; (22):42-9. PubMed ID: 1095010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane.
    Zelikovic I; Budreau-Patters A
    Mol Genet Metab; 1999 Jul; 67(3):236-47. PubMed ID: 10381331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is intestinal peptide transport energized by a proton gradient?
    Ganapathy ; Leibach FH
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G153-60. PubMed ID: 2992286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier-mediated reabsorption of small peptides in renal proximal tubule.
    Ganapathy V; Leibach FH
    Am J Physiol; 1986 Dec; 251(6 Pt 2):F945-53. PubMed ID: 3538905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and regulation of intestinal phosphate absorption.
    Cross HS; Debiec H; Peterlik M
    Miner Electrolyte Metab; 1990; 16(2-3):115-24. PubMed ID: 2250617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide transport across the animal cell plasma membrane: recent developments.
    Ganapathy V; Miyamoto Y; Tiruppathi C; Leibach FH
    Indian J Biochem Biophys; 1991; 28(5-6):317-23. PubMed ID: 1812062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of cefadroxil in rat kidney brush-border membranes is mediated by two electrogenic H+-coupled systems.
    Ries M; Wenzel U; Daniel H
    J Pharmacol Exp Ther; 1994 Dec; 271(3):1327-33. PubMed ID: 7996442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide transporters in the intestine and the kidney.
    Leibach FH; Ganapathy V
    Annu Rev Nutr; 1996; 16():99-119. PubMed ID: 8839921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles.
    Miyauchi S; Abbot EL; Zhuang L; Subramanian R; Ganapathy V; Thwaites DT
    Mol Membr Biol; 2005; 22(6):549-59. PubMed ID: 16373326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A; Terasaki T; Tamai I; Hirooka H
    J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of oral cephalosporins by the H+/dipeptide cotransporter and distribution of the transport activity in isolated rabbit intestinal epithelial cells.
    Tomita Y; Takano M; Yasuhara M; Hori R; Inui K
    J Pharmacol Exp Ther; 1995 Jan; 272(1):63-9. PubMed ID: 7815365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+ and pH dependence of proline and beta-alanine absorption in rat small intestine.
    IƱigo C; Barber A; Lostao MP
    Acta Physiol (Oxf); 2006 Apr; 186(4):271-8. PubMed ID: 16634782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H+-zwitterionic amino acid symport at the brush-border membrane of human intestinal epithelial (CACO-2) cells.
    Thwaites DT; Stevens BC
    Exp Physiol; 1999 Mar; 84(2):275-84. PubMed ID: 10226170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+ transport by human placental brush border membranes: are there several mechanisms?
    Brunette MG; Leclerc ; Claveau D
    J Cell Physiol; 1996 Apr; 167(1):72-80. PubMed ID: 8698842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect regulation of the intestinal H+-coupled amino acid transporter hPAT1 (SLC36A1).
    Anderson CM; Thwaites DT
    J Cell Physiol; 2005 Aug; 204(2):604-13. PubMed ID: 15754324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal tubular processing of small peptide hormones.
    Carone FA; Peterson DR; Flouret G
    J Lab Clin Med; 1982 Jul; 100(1):1-14. PubMed ID: 7045258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na-glucose and Na-neutral amino acid cotransport are uniquely regulated by constitutive nitric oxide in rabbit small intestinal villus cells.
    Coon S; Kim J; Shao G; Sundaram U
    Am J Physiol Gastrointest Liver Physiol; 2005 Dec; 289(6):G1030-5. PubMed ID: 16099871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of transport for toxic cysteine conjugates in rat kidney cortex membrane vesicles.
    Schaeffer VH; Stevens JL
    Mol Pharmacol; 1987 Aug; 32(1):293-8. PubMed ID: 3614193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney.
    Saito H; Okuda M; Terada T; Sasaki S; Inui K
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1631-7. PubMed ID: 8531138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.