These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 33189056)
1. Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Zhu Y; Li T; Xu J; Wang J; Wang L; Zou W; Zeng D; Zhu L; Chen G; Hu J; Gao Z; Dong G; Ren D; Shen L; Zhang Q; Guo L; Hu S; Qian Q; Zhang G Plant Physiol Biochem; 2020 Dec; 157():359-369. PubMed ID: 33189056 [TBL] [Abstract][Full Text] [Related]
2. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. Hou W; Tränkner M; Lu J; Yan J; Huang S; Ren T; Cong R; Li X BMC Plant Biol; 2019 Jul; 19(1):302. PubMed ID: 31291890 [TBL] [Abstract][Full Text] [Related]
3. Physiological and Transcriptome Analyses of Early Leaf Senescence for Li Z; Pan X; Guo X; Fan K; Lin W Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836615 [TBL] [Abstract][Full Text] [Related]
4. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Ma X; Sun X; Li C; Huan R; Sun C; Wang Y; Xiao F; Wang Q; Chen P; Ma F; Zhang K; Wang P; Deng X Plant Physiol Biochem; 2017 Feb; 111():1-9. PubMed ID: 27875742 [TBL] [Abstract][Full Text] [Related]
5. ES5 is involved in the regulation of phosphatidylserine synthesis and impacts on early senescence in rice (Oryza sativa L.). Rani MH; Liu Q; Yu N; Zhang Y; Wang B; Cao Y; Zhang Y; Islam MA; Zegeye WA; Cao L; Cheng S Plant Mol Biol; 2020 Mar; 102(4-5):501-515. PubMed ID: 31919641 [TBL] [Abstract][Full Text] [Related]
6. Partial loss-of-function of NAL1 alters canopy photosynthesis by changing the contribution of upper and lower canopy leaves in rice. Hirotsu N; Ujiie K; Perera I; Iri A; Kashiwagi T; Ishimaru K Sci Rep; 2017 Nov; 7(1):15958. PubMed ID: 29162918 [TBL] [Abstract][Full Text] [Related]
7. PGL3 is required for chlorophyll synthesis and impacts leaf senescence in rice. Ye J; Yang YL; Wei XH; Niu XJ; Wang S; Xu Q; Yuan XP; Yu HY; Wang YP; Feng Y; Wang S J Zhejiang Univ Sci B; 2018 Apr.; 19(4):263-273. PubMed ID: 29616502 [TBL] [Abstract][Full Text] [Related]
8. Triose phosphate utilization in leaves is modulated by whole-plant sink-source ratios and nitrogen budgets in rice. Zhou Z; Zhang Z; van der Putten PEL; Fabre D; Dingkuhn M; Struik PC; Yin X J Exp Bot; 2023 Nov; 74(21):6692-6707. PubMed ID: 37642225 [TBL] [Abstract][Full Text] [Related]
9. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6 /f complex. Yamori W; Kondo E; Sugiura D; Terashima I; Suzuki Y; Makino A Plant Cell Environ; 2016 Jan; 39(1):80-7. PubMed ID: 26138548 [TBL] [Abstract][Full Text] [Related]
10. A xylan glucuronosyltransferase gene exhibits pleiotropic effects on cellular composition and leaf development in rice. Gao D; Sun W; Wang D; Dong H; Zhang R; Yu S Sci Rep; 2020 Feb; 10(1):3726. PubMed ID: 32111928 [TBL] [Abstract][Full Text] [Related]
11. Limiting factors for panicle photosynthesis at the anthesis and grain filling stages in rice (Oryza sativa L.). Zhang Q; Tang W; Peng S; Li Y Plant J; 2022 Jan; 109(1):77-91. PubMed ID: 34704647 [TBL] [Abstract][Full Text] [Related]
12. Current Understanding of Leaf Senescence in Rice. Lee S; Masclaux-Daubresse C Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925978 [TBL] [Abstract][Full Text] [Related]
13. NAL8 encodes a prohibitin that contributes to leaf and spikelet development by regulating mitochondria and chloroplasts stability in rice. Chen K; Guo T; Li XM; Yang YB; Dong NQ; Shi CL; Ye WW; Shan JX; Lin HX BMC Plant Biol; 2019 Sep; 19(1):395. PubMed ID: 31510917 [TBL] [Abstract][Full Text] [Related]
14. Restricting the above ground sink corrects the root/shoot ratio and substantially boosts the yield potential per panicle in field-grown rice (Oryza sativa L.). Nada RM; Abogadallah GM Physiol Plant; 2016 Apr; 156(4):371-86. PubMed ID: 26296302 [TBL] [Abstract][Full Text] [Related]
15. Morphological acclimation to agronomic manipulation in leaf dispersion and orientation to promote "Ideotype" breeding: Evidence from 3D visual modeling of "super" rice (Oryza sativa L.). Wang D; Fahad S; Saud S; Kamran M; Khan A; Khan MN; Hammad HM; Nasim W Plant Physiol Biochem; 2019 Feb; 135():499-510. PubMed ID: 30459081 [TBL] [Abstract][Full Text] [Related]
16. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling. Akhter D; Qin R; Nath UK; Eshag J; Jin X; Shi C Gene; 2019 May; 699():62-72. PubMed ID: 30858135 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a Novel Rice Dynamic Narrow-Rolled Leaf Mutant with Deficiencies in Aromatic Amino Acids. Wang H; Shi Y; Zhang X; Xu X; Wu JL Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102218 [TBL] [Abstract][Full Text] [Related]
18. DEP1 is involved in regulating the carbon-nitrogen metabolic balance to affect grain yield and quality in rice (Oriza sativa L.). Zhao M; Zhao M; Gu S; Sun J; Ma Z; Wang L; Zheng W; Xu Z PLoS One; 2019; 14(3):e0213504. PubMed ID: 30856225 [TBL] [Abstract][Full Text] [Related]
19. Leaf direction: Lamina joint development and environmental responses. Xu J; Wang JJ; Xue HW; Zhang GH Plant Cell Environ; 2021 Aug; 44(8):2441-2454. PubMed ID: 33866581 [TBL] [Abstract][Full Text] [Related]
20. Nitrate-responsive transcriptome analysis of rice RGA1 mutant reveals the role of G-protein alpha subunit in negative regulation of nitrogen-sensitivity and use efficiency. Prasanna JA; Mandal VK; Kumar D; Chakraborty N; Raghuram N Plant Cell Rep; 2023 Dec; 42(12):1987-2010. PubMed ID: 37874341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]