These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33189375)
1. Assessment of sulfamethoxazole removal by nanoscale zerovalent iron. Shanableh A; Bhattacharjee S; Alani S; Darwish N; Abdallah M; Mousa M; Semreen M Sci Total Environ; 2021 Mar; 761():143307. PubMed ID: 33189375 [TBL] [Abstract][Full Text] [Related]
2. Removal of antibiotic sulfamethoxazole by zero-valent iron under oxic and anoxic conditions: Removal mechanisms in acidic, neutral and alkaline solutions. Kobayashi M; Kurosu S; Yamaguchi R; Kawase Y J Environ Manage; 2017 Sep; 200():88-96. PubMed ID: 28570939 [TBL] [Abstract][Full Text] [Related]
3. Strategy and mechanisms of sulfamethoxazole removal from aqueous systems by single and combined Shewanella oneidensis MR-1 and nanoscale zero-valent iron-enriched biochar. Li Y; Zhu Y; Yan X; Zhang G; Yan G; Li H Sci Total Environ; 2023 Jul; 883():163676. PubMed ID: 37100153 [TBL] [Abstract][Full Text] [Related]
4. Efficient removal of sulfamethoxazole by resin-supported zero-valent iron composites with tunable structure: Performance, mechanisms, and degradation pathways. Song Y; Zeng Y; Liao J; Chen J; Du Q Chemosphere; 2021 Apr; 269():128684. PubMed ID: 33127113 [TBL] [Abstract][Full Text] [Related]
5. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization. Zhang W; Qian L; Ouyang D; Chen Y; Han L; Chen M Chemosphere; 2019 Apr; 221():683-692. PubMed ID: 30669110 [TBL] [Abstract][Full Text] [Related]
6. Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron. Xu W; Hu X; Lou Y; Jiang X; Shi K; Tong Y; Xu X; Shen C; Hu B; Lou L Environ Res; 2020 Aug; 187():109662. PubMed ID: 32460094 [TBL] [Abstract][Full Text] [Related]
7. Enhanced molybdenum(VI) removal using sulfide-modified nanoscale zerovalent iron: kinetics and influencing factors. Lian JJ; Yang M; Wang HL; Zhong Y; Chen B; Huang WL; Peng PA Water Sci Technol; 2021 Jan; 83(2):297-308. PubMed ID: 33504695 [TBL] [Abstract][Full Text] [Related]
8. Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: Mechanism and risk assessment using environmental metabolomics. Yu X; Jin X; Wang N; Yu Y; Zhu X; Chen M; Zhong Y; Sun J; Zhu L J Hazard Mater; 2022 Apr; 428():128244. PubMed ID: 35032952 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of illite/iron nanoparticles and their application as an adsorbent of lead ions. Cai X; Yu X; Yu X; Wu Z; Li S; Yu C Environ Sci Pollut Res Int; 2019 Oct; 26(28):29449-29459. PubMed ID: 31401799 [TBL] [Abstract][Full Text] [Related]
10. Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil: Effect, mechanism and ecotoxicity. Zhou Z; Ma J; Liu X; Lin C; Sun K; Zhang H; Li X; Fan G Chemosphere; 2019 May; 223():196-203. PubMed ID: 30780030 [TBL] [Abstract][Full Text] [Related]
11. Iron-activated bermudagrass-derived biochar for adsorption of aqueous sulfamethoxazole: Effects of iron impregnation ratio on biochar properties, adsorption, and regeneration. Zeng S; Choi YK; Kan E Sci Total Environ; 2021 Jan; 750():141691. PubMed ID: 32853938 [TBL] [Abstract][Full Text] [Related]
12. Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron. Wu B; Peng D; Hou S; Tang B; Wang C; Xu H Environ Pollut; 2018 Sep; 240():717-724. PubMed ID: 29778057 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of Nanoscale Zerovalent Iron (nZVI) Supported on Biochar for Chromium Remediation from Aqueous Solution and Soil. Wang H; Zhang M; Li H Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31726717 [TBL] [Abstract][Full Text] [Related]
14. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions. Gil A; Amiri MJ; Abedi-Koupai J; Eslamian S Environ Sci Pollut Res Int; 2018 Jan; 25(3):2814-2829. PubMed ID: 29143259 [TBL] [Abstract][Full Text] [Related]
15. Removal of polybrominated diphenyl ethers by biomass carbon-supported nanoscale zerovalent iron particles: influencing factors, kinetics, and mechanism. Fu R; Xu Z; Peng L; Bi D Environ Sci Pollut Res Int; 2016 Dec; 23(23):23983-23993. PubMed ID: 27634155 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Giasuddin AB; Kanel SR; Choi H Environ Sci Technol; 2007 Mar; 41(6):2022-7. PubMed ID: 17410800 [TBL] [Abstract][Full Text] [Related]
17. Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles. Yao B; Liu Y; Zou D Chemosphere; 2019 Jul; 226():298-306. PubMed ID: 30933739 [TBL] [Abstract][Full Text] [Related]
18. Encapsulation of iron nanoparticles with magnesium hydroxide shell for remarkable removal of ciprofloxacin from contaminated water. Falyouna O; Maamoun I; Bensaida K; Tahara A; Sugihara Y; Eljamal O J Colloid Interface Sci; 2022 Jan; 605():813-827. PubMed ID: 34371426 [TBL] [Abstract][Full Text] [Related]
19. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater. Li H; Chen YQ; Chen S; Wang XL; Guo S; Qiu YF; Liu YD; Duan XL; Yu YJ PLoS One; 2017; 12(3):e0172337. PubMed ID: 28264061 [TBL] [Abstract][Full Text] [Related]
20. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Lv D; Zhou J; Cao Z; Xu J; Liu Y; Li Y; Yang K; Lou Z; Lou L; Xu X Chemosphere; 2019 Jun; 224():306-315. PubMed ID: 30844587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]