These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33189683)

  • 1. Scanning Super-Resolution Imaging in Enclosed Environment by Laser Tweezer Controlled Superlens.
    Wen Y; Yu H; Zhao W; Li P; Wang F; Ge Z; Wang X; Liu L; Li WJ
    Biophys J; 2020 Dec; 119(12):2451-2460. PubMed ID: 33189683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Sensing Scanning Superlens for Three-Dimensional Noninvasive Visible-Light Nanoscale Imaging on Complex Surfaces.
    Luo H; Wang X; Wen Y; Li S; Zhang T; Jiang C; Wang F; Liu L; Yu H
    Nano Lett; 2023 May; 23(10):4311-4317. PubMed ID: 37155371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning a normal microscope into a super-resolution instrument using a scanning microlens array.
    Huszka G; Gijs MAM
    Sci Rep; 2018 Jan; 8(1):601. PubMed ID: 29330492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlative super-resolution bright-field and fluorescence imaging by microsphere assisted microscopy.
    Luo H; Jiang C; Wen Y; Wang X; Wang F; Liu L; Yu H
    Nanoscale; 2024 Jan; 16(4):1703-1710. PubMed ID: 38099700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsphere-based super-resolution scanning optical microscope.
    Huszka G; Yang H; Gijs MAM
    Opt Express; 2017 Jun; 25(13):15079-15092. PubMed ID: 28788940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic Assembly and Scanning of Superlens Arrays for High-Resolution and Large Field-of-View Bioimaging.
    Hu X; Zheng J; Zhu Q; Wu Q; Li SS; Yang Y; Chen LJ
    ACS Nano; 2024 Jun; 18(23):15218-15228. PubMed ID: 38819133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic platform for correlative live-cell and super-resolution microscopy.
    Tam J; Cordier GA; Bálint Š; Sandoval Álvarez Á; Borbely JS; Lakadamyali M
    PLoS One; 2014; 9(12):e115512. PubMed ID: 25545548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-Resolution Real Imaging in Microsphere-Assisted Microscopy.
    Lai HS; Wang F; Li Y; Jia B; Liu L; Li WJ
    PLoS One; 2016; 11(10):e0165194. PubMed ID: 27768774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A super-resolution scanning algorithm for lensless microfluidic imaging using the dual-line array image sensor.
    Tian D; Yu N; Li Z; Li S; Li N
    PLoS One; 2020; 15(6):e0235111. PubMed ID: 32584867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addressing the imaging limitations of a microsphere-assisted nanoscope.
    Zhai C; Hong Y; Lin Z; Chen Y; Guo M; Guo T; Wang H; Hu C
    Opt Express; 2022 Oct; 30(22):39417-39430. PubMed ID: 36298895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.
    Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F
    Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-functional microfluidic device compatible with widefield and light sheet microscopy.
    Moore RP; O'Shaughnessy EC; Shi Y; Nogueira AT; Heath KM; Hahn KM; Legant WR
    Lab Chip; 2021 Dec; 22(1):136-147. PubMed ID: 34859808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic nano-imaging
    Wu G; Ng SWL; Zhou Y; Hong M
    Lab Chip; 2023 Jun; 23(13):3070-3079. PubMed ID: 37287339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.
    De Coster D; Ottevaere H; Vervaeke M; Van Erps J; Callewaert M; Wuytens P; Simpson SH; Hanna S; De Malsche W; Thienpont H
    Opt Express; 2015 Nov; 23(24):30991-1009. PubMed ID: 26698730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
    Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B
    Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microlens-array-enabled on-chip optical trapping and sorting.
    Zhao X; Sun Y; Bu J; Zhu S; Yuan XC
    Appl Opt; 2011 Jan; 50(3):318-22. PubMed ID: 21263729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsphere-Based Super-Resolution Imaging for Visualized Nanomanipulation.
    Zhang T; Yu H; Li P; Wang X; Wang F; Shi J; Liu Z; Yu P; Yang W; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48093-48100. PubMed ID: 32960563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.