BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33190313)

  • 1. Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review.
    Winchell LJ; Ross JJ; Wells MJM; Fonoll X; Norton JW; Bell KY
    Water Environ Res; 2021 Jun; 93(6):826-843. PubMed ID: 33190313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem.
    Stoiber T; Evans S; Naidenko OV
    Chemosphere; 2020 Dec; 260():127659. PubMed ID: 32698118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-temperature technology survey and comparison among incineration, pyrolysis, and gasification systems for water resource recovery facilities.
    Winchell LJ; Ross JJ; Brose DA; Pluth TB; Fonoll X; Norton JW; Bell KY
    Water Environ Res; 2022 Mar; 94(4):e10715. PubMed ID: 35388572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review.
    Longendyke GK; Katel S; Wang Y
    Environ Sci Process Impacts; 2022 Feb; 24(2):196-208. PubMed ID: 34985474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is removal and destruction of perfluoroalkyl and polyfluoroalkyl substances from wastewater effluent affordable?
    Ling AL; Vermace RR; McCabe AJ; Wolohan KM; Kyser SJ
    Water Environ Res; 2024 Jan; 96(1):e10975. PubMed ID: 38254296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Management of per- and polyfluoroalkyl substances (PFAS)-laden wastewater sludge in Maine: Perspectives on a wicked problem.
    Moavenzadeh Ghaznavi S; Zimmerman C; Shea ME; MacRae JD; Peckenham JM; Noblet CL; Apul OG; Kopec AD
    Biointerphases; 2023 Jul; 18(4):. PubMed ID: 37602771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smouldering to treat PFAS in sewage sludge.
    Fournie T; Rashwan TL; Switzer C; Gerhard JI
    Waste Manag; 2023 Jun; 164():219-227. PubMed ID: 37084670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis and gasification at water resource recovery facilities: Status of the industry.
    Winchell LJ; Ross JJ; Brose DA; Pluth TB; Fonoll X; Norton JW; Bell KY
    Water Environ Res; 2022 Mar; 94(3):e10701. PubMed ID: 35298843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances on PFAS degradation
    Verma S; Lee T; Sahle-Demessie E; Ateia M; Nadagouda MN
    Chem Eng J Adv; 2022 Dec; 13():1-11. PubMed ID: 36923300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis-A tool in the wastewater solids handling portfolio, not a silver bullet: Benefits, drawbacks, and future directions.
    McNamara P; Liu Z; Tong Y; Santha H; Moss L; Zitomer D
    Water Environ Res; 2023 May; 95(5):e10863. PubMed ID: 37021664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial and thermal treatment techniques for degradation of PFAS in biosolids: A focus on degradation mechanisms and pathways.
    Kumar R; Dada TK; Whelan A; Cannon P; Sheehan M; Reeves L; Antunes E
    J Hazard Mater; 2023 Jun; 452():131212. PubMed ID: 36934630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Per- and polyfluoroalkyl substances fate and transport at a wastewater treatment plant with a collocated sewage sludge incinerator.
    Seay BA; Dasu K; MacGregor IC; Austin MP; Krile RT; Frank AJ; Fenton GA; Heiss DR; Williamson RJ; Buehler S
    Sci Total Environ; 2023 May; 874():162357. PubMed ID: 36858229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration.
    Altarawneh M; Almatarneh MH; Dlugogorski BZ
    Chemosphere; 2022 Jan; 286(Pt 2):131685. PubMed ID: 34388878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes.
    Wang J; Lin Z; He X; Song M; Westerhoff P; Doudrick K; Hanigan D
    Environ Sci Technol; 2022 May; 56(9):5355-5370. PubMed ID: 35446563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combustion of C
    Krug JD; Lemieux PM; Lee CW; Ryan JV; Kariher PH; Shields EP; Wickersham LC; Denison MK; Davis KA; Swensen DA; Burnette RP; Wendt JOL; Linak WP
    J Air Waste Manag Assoc; 2022 Mar; 72(3):256-270. PubMed ID: 34994684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal treatment of sewage sludge in Germany: A review.
    Schnell M; Horst T; Quicker P
    J Environ Manage; 2020 Jun; 263():110367. PubMed ID: 32174521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis.
    Sørmo E; Castro G; Hubert M; Licul-Kucera V; Quintanilla M; Asimakopoulos AG; Cornelissen G; Arp HPH
    J Hazard Mater; 2023 Jul; 454():131447. PubMed ID: 37121036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and fate of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment facilities.
    Tavasoli E; Luek JL; Malley JP; Mouser PJ
    Environ Sci Process Impacts; 2021 Jun; 23(6):903-913. PubMed ID: 34028475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of inventory data for the thermal treatment of sewage sludge.
    Chang H; Zhao Y; Zhao S; Damgaard A; Christensen TH
    Waste Manag; 2022 Jun; 146():106-118. PubMed ID: 35588648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature destruction of gas-phase per- and polyfluoroalkyl substances using an alumina-based catalyst.
    Shields EP; Wallace MAG
    J Air Waste Manag Assoc; 2023 Jul; 73(7):525-532. PubMed ID: 37158498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.