These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33190363)

  • 1. Electron microscopic study of the median structure of the posterior column of the spinal cord of the adult rat with a special reference to the posterior median septum.
    Mii K; Yagishita S; Kumabe T
    Anat Rec (Hoboken); 2021 Mar; 304(3):625-630. PubMed ID: 33190363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery.
    Yanni DS; Ulkatan S; Deletis V; Barrenechea IJ; Sen C; Perin NI
    J Neurosurg Spine; 2010 Jun; 12(6):623-8. PubMed ID: 20515347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier.
    Snow DM; Steindler DA; Silver J
    Dev Biol; 1990 Apr; 138(2):359-76. PubMed ID: 1690673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light microscopic, immunohistochemical localization of the pia-glial basal lamina.
    Kowalski TF; Vahlsing HL; Feringa ER
    J Histochem Cytochem; 1980 Apr; 28(4):347-53. PubMed ID: 6989896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The precise midline myelotomy through anatomical posterior median septum by dissecting dorsal column in microsurgical resection of ependymoma (2-dimensional operative video).
    Kim JH; Chung CK
    Neurosurg Focus Video; 2023 Oct; 9(2):V5. PubMed ID: 37854658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axon-glial relationships in early CNS-PNS transitional zone development: an ultrastructural study.
    Fraher JP
    J Neurocytol; 1997 Jan; 26(1):41-52. PubMed ID: 9154528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subpial glial limiting membrane of the cat spinal cord visualized by scanning electron microscopy.
    Sasaki H
    Anat Embryol (Berl); 1989; 179(6):533-40. PubMed ID: 2751115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ependyma and meninges of the spinal cord of the mouse. A light-and electron-microscopic study.
    Seitz R; Löhler J; Schwendemann G
    Cell Tissue Res; 1981; 220(1):61-72. PubMed ID: 7273132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial glia give rise to perinodal processes.
    Sims TJ; Gilmore SA; Waxman SG
    Brain Res; 1991 May; 549(1):25-35. PubMed ID: 1893250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural findings in human spinal pia mater in relation to subarachnoid anesthesia.
    Reina MA; De León Casasola Ode L; Villanueva MC; López A; Machés F; De Andrés JA
    Anesth Analg; 2004 May; 98(5):1479-85, table of contents. PubMed ID: 15105235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human fetal spinal cord xenografted to the eye of athymic nude rats: survival, ultrastructural differentiation, glial responses and vascular interactions.
    Inoue HK; Henschen A; Olson L
    J Electron Microsc (Tokyo); 1994 Feb; 43(1):1-9. PubMed ID: 8021560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The developing cervical spinal ventral commissure of the rat: a highly controlled axon-glial system.
    Lane S; McDermott K; Dockery P; Fraher J
    J Neurocytol; 2004 Sep; 33(5):489-501. PubMed ID: 15906157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a "panglial syncytium" that is not coupled to neurons.
    Rash JE; Duffy HS; Dudek FE; Bilhartz BL; Whalen LR; Yasumura T
    J Comp Neurol; 1997 Nov; 388(2):265-92. PubMed ID: 9368841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure of the central gray region (lamina X) in cat spinal cord.
    Miller KE; Seybold VS
    Neuroscience; 1987 Sep; 22(3):1057-66. PubMed ID: 3683846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord.
    Gilmore SA; Sims TJ
    J Anat; 1997 Jan; 190 ( Pt 1)(Pt 1):5-21. PubMed ID: 9034878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord.
    Henrikson CK; Vaughn JE
    J Neurocytol; 1974 Dec; 3(6):659-75. PubMed ID: 4461770
    [No Abstract]   [Full Text] [Related]  

  • 18. AN ELECTRON MICROSCOPE STUDY OF CULTURED RAT SPINAL CORD.
    BUNGE RP; BUNGE MB; PETERSON ER
    J Cell Biol; 1965 Feb; 24(2):163-91. PubMed ID: 14326105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radial glial cells derived from the neonatal rat spinal cord: morphological and immunocytochemical characterization.
    Moreels M; Vandenabeele F; Deryck L; Lambrichts I
    Arch Histol Cytol; 2005 Dec; 68(5):361-9. PubMed ID: 16505582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light and electron microscopic studies of the distribution of NADPH-diaphorase in the rat upper thoracic spinal cord with special reference to the spinal autonomic region.
    Tang FR; Tan CK; Ling EA
    Arch Histol Cytol; 1995 Dec; 58(5):493-505. PubMed ID: 8845231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.