BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33190490)

  • 21. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase.
    Fan B; Rosen BP
    J Biol Chem; 2002 Dec; 277(49):46987-92. PubMed ID: 12351646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases.
    Mandal AK; Yang Y; Kertesz TM; Argüello JM
    J Biol Chem; 2004 Dec; 279(52):54802-7. PubMed ID: 15494391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain.
    Mana-Capelli S; Mandal AK; Argüello JM
    J Biol Chem; 2003 Oct; 278(42):40534-41. PubMed ID: 12876283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase.
    Sazinsky MH; Mandal AK; Argüello JM; Rosenzweig AC
    J Biol Chem; 2006 Apr; 281(16):11161-6. PubMed ID: 16495228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein.
    Lee S; Kim YY; Lee Y; An G
    Plant Physiol; 2007 Nov; 145(3):831-42. PubMed ID: 17827266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals.
    Lee J; Bae H; Jeong J; Lee JY; Yang YY; Hwang I; Martinoia E; Lee Y
    Plant Physiol; 2003 Oct; 133(2):589-96. PubMed ID: 14512517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new metal binding domain involved in cadmium, cobalt and zinc transport.
    Smith AT; Barupala D; Stemmler TL; Rosenzweig AC
    Nat Chem Biol; 2015 Sep; 11(9):678-84. PubMed ID: 26192600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of ZntA, a zinc-transporting P1-type ATPase, is specifically regulated by zinc and cadmium.
    Noll M; Lutsenko S
    IUBMB Life; 2000 Apr; 49(4):297-302. PubMed ID: 10995032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA.
    Mandal AK; Argüello JM
    Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pb(II)-translocating P-type ATPases.
    Rensing C; Sun Y; Mitra B; Rosen BP
    J Biol Chem; 1998 Dec; 273(49):32614-7. PubMed ID: 9830000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and mechanism of Zn2+-transporting P-type ATPases.
    Wang K; Sitsel O; Meloni G; Autzen HE; Andersson M; Klymchuk T; Nielsen AM; Rees DC; Nissen P; Gourdon P
    Nature; 2014 Oct; 514(7523):518-22. PubMed ID: 25132545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator.
    Lee SW; Glickmann E; Cooksey DA
    Appl Environ Microbiol; 2001 Apr; 67(4):1437-44. PubMed ID: 11282588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phospholipid requirement and pH optimum for the in vitro enzymatic activity of the E. coli P-type ATPase ZntA.
    Zimmer J; Doyle DA
    Biochim Biophys Acta; 2006 May; 1758(5):645-52. PubMed ID: 16730648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A tetrahedral coordination of Zinc during transmembrane transport by P-type Zn(2+)-ATPases.
    Raimunda D; Subramanian P; Stemmler T; Argüello JM
    Biochim Biophys Acta; 2012 May; 1818(5):1374-7. PubMed ID: 22387457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli.
    Bramkamp M; Altendorf K
    Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase.
    Rensing C; Mitra B; Rosen BP
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14326-31. PubMed ID: 9405611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc.
    Wang D; Hosteen O; Fierke CA
    J Inorg Biochem; 2012 Jun; 111():173-81. PubMed ID: 22459916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutagenesis of the C-terminal nucleotide-binding site of an anion-translocating ATPase.
    Kaur P; Rosen BP
    J Biol Chem; 1992 Sep; 267(27):19272-7. PubMed ID: 1388167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans.
    Legatzki A; Grass G; Anton A; Rensing C; Nies DH
    J Bacteriol; 2003 Aug; 185(15):4354-61. PubMed ID: 12867443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.