These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33190490)

  • 81. Diversity of the metal-transporting P1B-type ATPases.
    Smith AT; Smith KP; Rosenzweig AC
    J Biol Inorg Chem; 2014 Aug; 19(6):947-60. PubMed ID: 24729073
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein.
    van der Wolk JP; Klose M; de Wit JG; den Blaauwen T; Freudl R; Driessen AJ
    J Biol Chem; 1995 Aug; 270(32):18975-82. PubMed ID: 7642557
    [TBL] [Abstract][Full Text] [Related]  

  • 83. ATP increases the affinity between MutS ATPase domains. Implications for ATP hydrolysis and conformational changes.
    Lamers MH; Georgijevic D; Lebbink JH; Winterwerp HH; Agianian B; de Wind N; Sixma TK
    J Biol Chem; 2004 Oct; 279(42):43879-85. PubMed ID: 15297450
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Copper transfer to the N-terminal domain of the Wilson disease protein (ATP7B): X-ray absorption spectroscopy of reconstituted and chaperone-loaded metal binding domains and their interaction with exogenous ligands.
    Ralle M; Lutsenko S; Blackburn NJ
    J Inorg Biochem; 2004 May; 98(5):765-74. PubMed ID: 15134922
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Site-specific mutagenesis of conserved residues within Walker A and B sequences of Escherichia coli UvrA protein.
    Myles GM; Hearst JE; Sancar A
    Biochemistry; 1991 Apr; 30(16):3824-34. PubMed ID: 1826850
    [TBL] [Abstract][Full Text] [Related]  

  • 86. From membrane to molecule to the third amino acid from the left with a membrane transport protein.
    Kaback HR; Wu J
    Q Rev Biophys; 1997 Nov; 30(4):333-64. PubMed ID: 9634651
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cys-113 and Cys-422 form a high affinity metalloid binding site in the ArsA ATPase.
    Ruan X; Bhattacharjee H; Rosen BP
    J Biol Chem; 2006 Apr; 281(15):9925-34. PubMed ID: 16467301
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites.
    Cater MA; Forbes J; La Fontaine S; Cox D; Mercer JF
    Biochem J; 2004 Jun; 380(Pt 3):805-13. PubMed ID: 14998371
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase.
    Mitchell C; Oliver D
    Mol Microbiol; 1993 Nov; 10(3):483-97. PubMed ID: 7968527
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Nitric oxide releases intracellular zinc from prokaryotic metallothionein in Escherichia coli.
    Binet MR; Cruz-Ramos H; Laver J; Hughes MN; Poole RK
    FEMS Microbiol Lett; 2002 Jul; 213(1):121-6. PubMed ID: 12127498
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance.
    Tong L; Nakashima S; Shibasaka M; Katsuhara M; Kasamo K
    J Bacteriol; 2002 Sep; 184(18):5027-35. PubMed ID: 12193618
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Structural basis for autoregulation of the zinc transporter YiiP.
    Lu M; Chai J; Fu D
    Nat Struct Mol Biol; 2009 Oct; 16(10):1063-7. PubMed ID: 19749753
    [TBL] [Abstract][Full Text] [Related]  

  • 93. [Advances in plant heavy metal transporter P1B-ATPases].
    An P; Zhang D; Zhou Z; Han D; Xu Z; Huang W
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3020-3030. PubMed ID: 34622614
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The P-type ATPase CtpG preferentially transports Cd
    López M; Quitian LV; Calderón MN; Soto CY
    Arch Microbiol; 2018 Apr; 200(3):483-492. PubMed ID: 29197950
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence.
    Argüello JM; González-Guerrero M; Raimunda D
    Biochemistry; 2011 Nov; 50(46):9940-9. PubMed ID: 21999638
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution.
    Ashrafi E; Alemzadeh A; Ebrahimi M; Ebrahimie E; Dadkhodaei N; Ebrahimi M
    Bioinform Biol Insights; 2011 Apr; 5():59-82. PubMed ID: 21573033
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The CopA2-Type P
    Andrei A; Di Renzo MA; Öztürk Y; Meisner A; Daum N; Frank F; Rauch J; Daldal F; Andrade SLA; Koch HG
    Front Microbiol; 2021; 12():712465. PubMed ID: 34589071
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Plastic recognition and electrogenic uniport translocation of 1
    Abeyrathna SS; Abeyrathna NS; Basak P; Irvine GW; Zhang L; Meloni G
    Chem Sci; 2023 Jun; 14(22):6059-6078. PubMed ID: 37293658
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Design of Pb(II)-Specific
    Jeon Y; Lee Y; Jang G; Kim BG; Yoon Y
    Front Microbiol; 2022; 13():881050. PubMed ID: 35668759
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms.
    Boudehen YM; Faucher M; Maréchal X; Miras R; Rech J; Rombouts Y; Sénèque O; Wallat M; Demange P; Bouet JY; Saurel O; Catty P; Gutierrez C; Neyrolles O
    Nat Commun; 2022 Aug; 13(1):4731. PubMed ID: 35961955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.