BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33190514)

  • 1. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes.
    Zhang YY; Stockmann R; Ng K; Ajlouni S
    Crit Rev Food Sci Nutr; 2022; 62(6):1696-1712. PubMed ID: 33190514
    [No Abstract]   [Full Text] [Related]  

  • 2. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytic acid interactions in food systems.
    Cheryan M
    Crit Rev Food Sci Nutr; 1980; 13(4):297-335. PubMed ID: 7002470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of vegetable protein sources on trace element and mineral bioavailability.
    Hurrell RF
    J Nutr; 2003 Sep; 133(9):2973S-7S. PubMed ID: 12949395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the FAO/INFOODS/IZINCG Global Food Composition Database for Phytate.
    Dahdouh S; Grande F; Espinosa SN; Vincent A; Gibson R; Bailey K; King J; Rittenschober D; Charrondière UR
    J Food Compost Anal; 2019 May; 78():42-48. PubMed ID: 31057213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability.
    Castro-Alba V; Lazarte CE; Bergenståhl B; Granfeldt Y
    Food Sci Nutr; 2019 Sep; 7(9):2854-2865. PubMed ID: 31572579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes?
    Elliott H; Woods P; Green BD; Nugent AP
    Nutr Bull; 2022 Jun; 47(2):138-156. PubMed ID: 36045098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phytate and minerals on the bioavailability of oxalate from food.
    Israr B; Frazier RA; Gordon MH
    Food Chem; 2013 Dec; 141(3):1690-3. PubMed ID: 23870879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability of minerals in legumes.
    Sandberg AS
    Br J Nutr; 2002 Dec; 88 Suppl 3():S281-5. PubMed ID: 12498628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China.
    Ma G; Jin Y; Piao J; Kok F; Guusje B; Jacobsen E
    J Agric Food Chem; 2005 Dec; 53(26):10285-90. PubMed ID: 16366728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods.
    Troesch B; Jing H; Laillou A; Fowler A
    Food Nutr Bull; 2013 Jun; 34(2 Suppl):S90-101. PubMed ID: 24050000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation of food and feed: A technology for efficient utilization of macro and trace elements in monogastrics.
    Humer E; Schedle K
    J Trace Elem Med Biol; 2016 Sep; 37():69-77. PubMed ID: 27012174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China.
    Ma G; Li Y; Jin Y; Zhai F; Kok FJ; Yang X
    Eur J Clin Nutr; 2007 Mar; 61(3):368-74. PubMed ID: 16929240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Household dietary strategies to enhance the content and bioavailability of iron, zinc and calcium of selected rice- and maize-based Philippine complementary foods.
    Perlas LA; Gibson RS
    Matern Child Nutr; 2005 Oct; 1(4):263-73. PubMed ID: 16881908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies.
    Gibson RS; Raboy V; King JC
    Nutr Rev; 2018 Nov; 76(11):793-804. PubMed ID: 30010865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of phytates in human nutrition].
    Shikh EV; Makhova AA; Dorogun OB; Elizarova EV
    Vopr Pitan; 2023; 92(4):20-28. PubMed ID: 37801451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of oxate, phytate, tannins and cooking on iron bioavailability from foods commonly consumed in Mexico.
    Sotelo A; González-Osnaya L; Sánchez-Chinchillas A; Trejo A
    Int J Food Sci Nutr; 2010 Feb; 61(1):29-39. PubMed ID: 20001762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low zinc, iron, and calcium intakes of Northeast Thai school children consuming glutinous rice-based diets are not exacerbated by high phytate.
    Krittaphol W; Bailey KB; Pongcharoen T; Winichagoon P; Gibson RS
    Int J Food Sci Nutr; 2006; 57(7-8):520-8. PubMed ID: 17162330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.