These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 33190599)
1. Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging. Weldon KB; Olman CA Philos Trans R Soc Lond B Biol Sci; 2021 Jan; 376(1815):20200040. PubMed ID: 33190599 [TBL] [Abstract][Full Text] [Related]
2. Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data. Blazejewska AI; Fischl B; Wald LL; Polimeni JR Neuroimage; 2019 Apr; 189():601-614. PubMed ID: 30690157 [TBL] [Abstract][Full Text] [Related]
3. Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns. Chaimow D; Uğurbil K; Shmuel A Neuroimage; 2018 Jan; 164():67-99. PubMed ID: 28461061 [TBL] [Abstract][Full Text] [Related]
4. Time-dependent spatial specificity of high-resolution fMRI: insights into mesoscopic neurovascular coupling. Fukuda M; Poplawsky AJ; Kim SG Philos Trans R Soc Lond B Biol Sci; 2021 Jan; 376(1815):20190623. PubMed ID: 33190606 [TBL] [Abstract][Full Text] [Related]
5. New acquisition techniques and their prospects for the achievable resolution of fMRI. Bollmann S; Barth M Prog Neurobiol; 2021 Dec; 207():101936. PubMed ID: 33130229 [TBL] [Abstract][Full Text] [Related]
6. The impact of ultra-high field MRI on cognitive and computational neuroimaging. De Martino F; Yacoub E; Kemper V; Moerel M; Uludağ K; De Weerd P; Ugurbil K; Goebel R; Formisano E Neuroimage; 2018 Mar; 168():366-382. PubMed ID: 28396293 [TBL] [Abstract][Full Text] [Related]
7. Critical factors in achieving fine-scale functional MRI: Removing sources of inadvertent spatial smoothing. Wang J; Nasr S; Roe AW; Polimeni JR Hum Brain Mapp; 2022 Aug; 43(11):3311-3331. PubMed ID: 35417073 [TBL] [Abstract][Full Text] [Related]
9. Pulse sequences and parallel imaging for high spatiotemporal resolution MRI at ultra-high field. Poser BA; Setsompop K Neuroimage; 2018 Mar; 168():101-118. PubMed ID: 28392492 [TBL] [Abstract][Full Text] [Related]
10. Closed-loop fMRI at the mesoscopic scale of columns and layers: Can we do it and why would we want to? Chaimow D; Lorenz R; Weiskopf N Philos Trans R Soc Lond B Biol Sci; 2024 Dec; 379(1915):20230085. PubMed ID: 39428874 [TBL] [Abstract][Full Text] [Related]
11. 3.0-T functional brain imaging: a 5-year experience. Scarabino T; Giannatempo GM; Popolizio T; Tosetti M; d'Alesio V; Esposito F; Di Salle F; Di Costanzo A; Bertolino A; Maggialetti A; Salvolini U Radiol Med; 2007 Feb; 112(1):97-112. PubMed ID: 17310287 [TBL] [Abstract][Full Text] [Related]
12. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Uludağ K; Blinder P Neuroimage; 2018 Mar; 168():279-295. PubMed ID: 28254456 [TBL] [Abstract][Full Text] [Related]
13. A protocol for ultra-high field laminar fMRI in the human brain. Jia K; Zamboni E; Rua C; Goncalves NR; Kemper V; Ng AKT; Rodgers CT; Williams G; Goebel R; Kourtzi Z STAR Protoc; 2021 Jun; 2(2):100415. PubMed ID: 33851140 [TBL] [Abstract][Full Text] [Related]
14. Addressing challenges of high spatial resolution UHF fMRI for group analysis of higher-order cognitive tasks: An inter-sensory task directing attention between visual and somatosensory domains. Aquino KM; Sokoliuk R; Pakenham DO; Sanchez-Panchuelo RM; Hanslmayr S; Mayhew SD; Mullinger KJ; Francis ST Hum Brain Mapp; 2019 Mar; 40(4):1298-1316. PubMed ID: 30430706 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. Moerel M; De Martino F; Kemper VG; Schmitter S; Vu AT; Uğurbil K; Formisano E; Yacoub E Neuroimage; 2018 Jan; 164():18-31. PubMed ID: 28373123 [TBL] [Abstract][Full Text] [Related]
16. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition. Wu PH; Tsai PH; Wu ML; Chuang TC; Shih YY; Chung HW; Huang TY Med Phys; 2013 Dec; 40(12):122304. PubMed ID: 24320535 [TBL] [Abstract][Full Text] [Related]
17. Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity. Mishra A; Hall CN; Howarth C; Freeman RD Philos Trans R Soc Lond B Biol Sci; 2021 Jan; 376(1815):20190622. PubMed ID: 33190600 [TBL] [Abstract][Full Text] [Related]
18. Impact of acquisition and analysis strategies on cortical depth-dependent fMRI. Kashyap S; Ivanov D; Havlicek M; Poser BA; Uludağ K Neuroimage; 2018 Mar; 168():332-344. PubMed ID: 28506874 [TBL] [Abstract][Full Text] [Related]
19. Laminar fMRI: What can the time domain tell us? Petridou N; Siero JCW Neuroimage; 2019 Aug; 197():761-771. PubMed ID: 28736308 [TBL] [Abstract][Full Text] [Related]
20. Ultra-High Field Imaging of Human Visual Cognition. Jia K; Goebel R; Kourtzi Z Annu Rev Vis Sci; 2023 Sep; 9():479-500. PubMed ID: 37137282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]