These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33191052)

  • 61. Assessment of the economic recycling potential of a glycolysis treatment of rigid polyurethane foam waste: A case study from Thailand.
    Kanchanapiya P; Intaranon N; Tantisattayakul T
    J Environ Manage; 2021 Feb; 280():111638. PubMed ID: 33293164
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.
    Joppert N; da Silva AA; da Costa Marques MR
    Waste Manag; 2015 Feb; 36():166-76. PubMed ID: 25532672
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Economic evaluation of a hypothetical integrated energy recovery system for trommel fines.
    Eke J; Onwudili JA
    Waste Manag; 2021 Apr; 124():213-223. PubMed ID: 33631446
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Economics evaluation for on-site pyrolysis of kraft lignin to value-added chemicals.
    Farag S; Chaouki J
    Bioresour Technol; 2015 Jan; 175():254-61. PubMed ID: 25459830
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Low temperature conversion of plastic waste into light hydrocarbons.
    Shah SH; Khan ZM; Raja IA; Mahmood Q; Bhatti ZA; Khan J; Farooq A; Rashid N; Wu D
    J Hazard Mater; 2010 Jul; 179(1-3):15-20. PubMed ID: 20172649
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.
    Ateş F; Miskolczi N; Borsodi N
    Bioresour Technol; 2013 Apr; 133():443-54. PubMed ID: 23455219
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The contribution of high-resolution GC separations in plastic recycling research.
    Zanella D; Romagnoli M; Malcangi S; Beccaria M; Chenet T; De Luca C; Testoni F; Pasti L; Visentini U; Morini G; Cavazzini A; Franchina FA
    Anal Bioanal Chem; 2023 May; 415(13):2343-2355. PubMed ID: 36650250
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.
    Hammer NL; Boateng AA; Mullen CA; Wheeler MC
    J Environ Manage; 2013 Oct; 128():594-601. PubMed ID: 23845952
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Techno-Economic Assessment of Whey Protein-Based Plastic Production from a Co-Polymerization Process.
    Chalermthai B; Ashraf MT; Bastidas-Oyanedel JR; Olsen BD; Schmidt JE; Taher H
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272627
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pyrolysis of municipal plastic wastes: Influence of raw material composition.
    López A; de Marco I; Caballero BM; Laresgoiti MF; Adrados A
    Waste Manag; 2010 Apr; 30(4):620-7. PubMed ID: 19926462
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Technoeconomic Feasibility of a Sunflower Husk Fast Pyrolysis Value Chain for the Production of Advanced Biofuels.
    Nieder-Heitmann M; Savadkouhi SS; Venderbosch R; Leijenhorst E; van der Pol E; Vleeming H
    Energy Fuels; 2022 Nov; 36(21):13084-13093. PubMed ID: 36366752
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment.
    Alston SM; Arnold JC
    Environ Sci Technol; 2011 Nov; 45(21):9386-92. PubMed ID: 21939231
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California.
    Kang HY; Schoenung JM
    Environ Sci Technol; 2006 Mar; 40(5):1672-80. PubMed ID: 16568786
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Experimental investigation on liquefaction of plastic waste to oil in supercritical water.
    Bai B; Jin H; Fan C; Cao C; Wei W; Cao W
    Waste Manag; 2019 Apr; 89():247-253. PubMed ID: 31079737
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.
    Miskolczi N; Ateş F; Borsodi N
    Bioresour Technol; 2013 Sep; 144():370-9. PubMed ID: 23891947
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Influence of impurities on waste plastics pyrolysis: products and emissions].
    Zhao L; Wang ZH; Chen DZ; Ma XB; Luan J
    Huan Jing Ke Xue; 2012 Jan; 33(1):329-36. PubMed ID: 22452230
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Bio-oil production from biomass pyrolysis in molten salt].
    Ji D; Cai T; Ai N; Yu F; Jiang H; Ji J
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):475-81. PubMed ID: 21650030
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Grain size dependent distribution of different plastic types in coarse shredded mixed commercial and municipal waste.
    Möllnitz S; Khodier K; Pomberger R; Sarc R
    Waste Manag; 2020 Feb; 103():388-398. PubMed ID: 31935630
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 2: Effect of process temperature on product characteristics and their future applications.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2020 May; 261():110112. PubMed ID: 32001431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.