BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33191611)

  • 1. Development and validation of a prediction model for axial length elongation in myopic children treated with overnight orthokeratology.
    Xu S; Li Z; Hu Y; Zhao W; Jiang J; Feng Z; Chen W; Li C; Chen L; Fang B; Wang H; Zhai Z; Li B; Zeng J; Yang X
    Acta Ophthalmol; 2021 Aug; 99(5):e686-e693. PubMed ID: 33191611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of orthokeratology on axial length elongation in children with myopia: Contralateral comparison study.
    Na M; Yoo A
    Jpn J Ophthalmol; 2018 May; 62(3):327-334. PubMed ID: 29524061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of orthokeratology on axial length growth in myopic anisometropes.
    Chen Z; Zhou J; Qu X; Zhou X; Xue F;
    Cont Lens Anterior Eye; 2018 Jun; 41(3):263-266. PubMed ID: 29329901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology.
    Hu Y; Wen C; Li Z; Zhao W; Ding X; Yang X
    Br J Ophthalmol; 2019 Nov; 103(11):1571-1575. PubMed ID: 30705043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing axial elongation in myopic children using overnight orthokeratology.
    Huang Z; Zhao W; Mao YZ; Hu S; Du CX
    Sci Rep; 2023 May; 13(1):7715. PubMed ID: 37173387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of entrance pupil centration and coma aberrations on myopic progression following orthokeratology.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Suzaki A
    Clin Exp Optom; 2015 Nov; 98(6):534-40. PubMed ID: 26283026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy, Safety and Acceptability of Orthokeratology on Slowing Axial Elongation in Myopic Children by Meta-Analysis.
    Li SM; Kang MT; Wu SS; Liu LR; Li H; Chen Z; Wang N
    Curr Eye Res; 2016 May; 41(5):600-8. PubMed ID: 26237276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Sugimoto K
    Curr Eye Res; 2017 May; 42(5):713-720. PubMed ID: 27767354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is It Possible to Predict Progression of Childhood Myopia Using Short-Term Axial Change After Orthokeratology?
    Zhao Y; Hu P; Chen D; Ni H
    Eye Contact Lens; 2020 May; 46(3):136-140. PubMed ID: 31842031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refractive, biometric and corneal topographic parameter changes during 12 months of orthokeratology.
    Queirós A; Lopes-Ferreira D; Yeoh B; Issacs S; Amorim-De-Sousa A; Villa-Collar C; González-Méijome J
    Clin Exp Optom; 2020 Jul; 103(4):454-462. PubMed ID: 31694069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results.
    Kinoshita N; Konno Y; Hamada N; Kanda Y; Shimmura-Tomita M; Kakehashi A
    Jpn J Ophthalmol; 2018 Sep; 62(5):544-553. PubMed ID: 29974278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering optical zone diameter, reverse curve width, and compression factor: impacts on visual performance and axial elongation in orthokeratology.
    Wu J; Zhang X; Wang L; Zhang P; Guo X; Xie P
    Cont Lens Anterior Eye; 2024 Jun; 47(3):102136. PubMed ID: 38503665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
    Li Z; Hu Y; Cui D; Long W; He M; Yang X
    Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern of Axial Length Growth in Children Myopic Anisometropes with Orthokeratology Treatment.
    Long W; Li Z; Hu Y; Cui D; Zhai Z; Yang X
    Curr Eye Res; 2020 Jul; 45(7):834-838. PubMed ID: 31821058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact Lens Methods for Clinical Myopia Control.
    Turnbull PR; Munro OJ; Phillips JR
    Optom Vis Sci; 2016 Sep; 93(9):1120-6. PubMed ID: 27564516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central and Peripheral Corneal Power Change in Myopic Orthokeratology and Its Relationship With 2-Year Axial Length Change.
    Zhong Y; Chen Z; Xue F; Miao H; Zhou X
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4514-9. PubMed ID: 26200489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of corneal e-value on myopia control in children and adolescents with orthokeratology].
    Xu Q; Hu YY; Wen Y; Liu GY; Yang ZP; Zhang CC; Ding MH; Bi HS
    Zhonghua Yan Ke Za Zhi; 2024 Apr; 60(4):330-336. PubMed ID: 38583056
    [No Abstract]   [Full Text] [Related]  

  • 18. Assessing the change of anisometropia in unilateral myopic children receiving monocular orthokeratology treatment.
    Tsai WS; Wang JH; Lee YC; Chiu CJ
    J Formos Med Assoc; 2019 Jul; 118(7):1122-1128. PubMed ID: 30782426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of the Euclid orthokeratology lens in slowing axial elongation.
    Bullimore MA; Liu M
    Cont Lens Anterior Eye; 2023 Oct; 46(5):101875. PubMed ID: 37365049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors associated with faster axial elongation after orthokeratology treatment.
    Qi Y; Liu L; Li Y; Zhang F
    BMC Ophthalmol; 2022 Feb; 22(1):62. PubMed ID: 35135507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.