These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33191733)

  • 21. Integration of microfluidic sample preparation with PCR detection to investigate the effects of simultaneous DNA-Inhibitor separation and DNA solution exchange.
    Nikdoost A; Doostmohammadi A; Romanick K; Thomas M; Rezai P
    Anal Chim Acta; 2021 May; 1160():338449. PubMed ID: 33894958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-based sorting of hydrogel droplets using inertial microfluidics.
    Li M; van Zee M; Goda K; Di Carlo D
    Lab Chip; 2018 Aug; 18(17):2575-2582. PubMed ID: 30046787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics.
    Faridi MA; Ramachandraiah H; Banerjee I; Ardabili S; Zelenin S; Russom A
    J Nanobiotechnology; 2017 Jan; 15(1):3. PubMed ID: 28052769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous aerosol size separator using inertial microfluidics and its application to airborne bacteria and viruses.
    Hong SC; Kang JS; Lee JE; Kim SS; Jung JH
    Lab Chip; 2015 Apr; 15(8):1889-97. PubMed ID: 25714231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing (SAIF) Microfluidic Chip.
    Abdulla A; Zhang T; Ahmad KZ; Li S; Lou J; Ding X
    Anal Chem; 2020 Dec; 92(24):16170-16179. PubMed ID: 33232155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of circulating fetal trophoblasts by a four-stage inertial microfluidic device for single-cell analysis and noninvasive prenatal testing.
    Huang Y; Yu S; Chao S; Wu L; Tao M; Situ B; Ye X; Zhang Y; Luo S; Chen W; Jiang X; Guan G; Zheng L
    Lab Chip; 2020 Nov; 20(23):4342-4348. PubMed ID: 33155006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Filter-less submicron hydrodynamic size sorting.
    Fouet M; Mader MA; Iraïn S; Yanha Z; Naillon A; Cargou S; Gué AM; Joseph P
    Lab Chip; 2016 Feb; 16(4):720-33. PubMed ID: 26778818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inertial microfluidic cube for automatic and fast extraction of white blood cells from whole blood.
    Zhu S; Wu D; Han Y; Wang C; Xiang N; Ni Z
    Lab Chip; 2020 Jan; 20(2):244-252. PubMed ID: 31833515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Performance and Tunability of a Co-Flow Inertial Microfluidic Device.
    Bogseth A; Zhou J; Papautsky I
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32164264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting.
    Yamada M; Seko W; Yanai T; Ninomiya K; Seki M
    Lab Chip; 2017 Jan; 17(2):304-314. PubMed ID: 27975084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size and shape based chromosome separation in the inertial focusing device.
    Feng H; Hockin M; Capecchi M; Gale B; Sant H
    Biomicrofluidics; 2020 Nov; 14(6):064109. PubMed ID: 33312330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels.
    Nivedita N; Ligrani P; Papautsky I
    Sci Rep; 2017 Mar; 7():44072. PubMed ID: 28281579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell-sorting centrifugal microfluidic chip with a flow rectifier.
    Ma J; Wu Y; Liu Y; Ji Y; Yang M; Zhu H
    Lab Chip; 2021 Jun; 21(11):2129-2141. PubMed ID: 33928337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.