These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33192430)
1. On-board Training Strategy for IMU-Based Real-Time Locomotion Recognition of Transtibial Amputees With Robotic Prostheses. Xu D; Wang Q Front Neurorobot; 2020; 14():47. PubMed ID: 33192430 [TBL] [Abstract][Full Text] [Related]
2. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses. Xu D; Feng Y; Mai J; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2015-2025. PubMed ID: 30334741 [TBL] [Abstract][Full Text] [Related]
3. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses. Zheng E; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910 [TBL] [Abstract][Full Text] [Related]
4. Locomotion Mode Recognition With Robotic Transtibial Prosthesis in Inter-Session and Inter-Day Applications. Zheng E; Wang Q; Qiao H IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1836-1845. PubMed ID: 31403436 [TBL] [Abstract][Full Text] [Related]
5. A Locomotion Mode Recognition Algorithm Using Adaptive Dynamic Movement Primitives. Eken H; Lanotte F; Papapicco V; Penna MF; Gruppioni E; Trigili E; Crea S; Vitiello N IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4318-4328. PubMed ID: 37883286 [TBL] [Abstract][Full Text] [Related]
6. Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU. Han Y; Liu C; Yan L; Ren L Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450967 [TBL] [Abstract][Full Text] [Related]
7. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit. Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219 [TBL] [Abstract][Full Text] [Related]
8. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis. Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928 [TBL] [Abstract][Full Text] [Related]
9. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
10. Myoelectric walking mode classification for transtibial amputees. Miller JD; Beazer MS; Hahn ME IEEE Trans Biomed Eng; 2013 Oct; 60(10):2745-50. PubMed ID: 23708765 [TBL] [Abstract][Full Text] [Related]
11. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
12. A training method for locomotion mode prediction using powered lower limb prostheses. Young AJ; Simon AM; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753 [TBL] [Abstract][Full Text] [Related]
13. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons. Gao F; Liu G; Liang F; Liao WH IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1334-1343. PubMed ID: 32286999 [TBL] [Abstract][Full Text] [Related]
14. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks. Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469 [TBL] [Abstract][Full Text] [Related]
15. Real-Time Activity Recognition With Instantaneous Characteristic Features of Thigh Kinematics. Cheng S; Bolivar-Nieto E; Gregg RD IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1827-1837. PubMed ID: 34428147 [TBL] [Abstract][Full Text] [Related]
16. The Role of Surface Electromyography in Data Fusion with Inertial Sensors to Enhance Locomotion Recognition and Prediction. Meng L; Pang J; Wang Z; Xu R; Ming D Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577498 [TBL] [Abstract][Full Text] [Related]
17. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors. Shin D; Lee S; Hwang S Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969 [TBL] [Abstract][Full Text] [Related]
18. A SE-DenseNet-LSTM model for locomotion mode recognition in lower limb exoskeleton. Tang J; Zhao L; Wu M; Jiang Z; Cao J; Bao X PeerJ Comput Sci; 2024; 10():e1881. PubMed ID: 38435551 [TBL] [Abstract][Full Text] [Related]
19. Swing-phase detection of locomotive mode transitions for smooth multi-functional robotic lower-limb prosthesis control. Haque MR; Islam MR; Sazonov E; Shen X Front Robot AI; 2024; 11():1267072. PubMed ID: 38680622 [TBL] [Abstract][Full Text] [Related]
20. A Method for Locomotion Mode Identification Using Muscle Synergies. Afzal T; Iqbal K; White G; Wright AB IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]