These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33193026)
1. Interval Timing in Pediatric Multiple Sclerosis: Impaired in the Subsecond Range but Unimpaired in the One-Second Range. Troche SJ; Kapanci T; Rammsayer TH; Kesseler CPA; Häusler MG; Geis T; Schimmel M; Elpers C; Kreth JH; Thiels C; Rostásy K Front Neurol; 2020; 11():575780. PubMed ID: 33193026 [No Abstract] [Full Text] [Related]
2. Visual-auditory differences in duration discrimination of intervals in the subsecond and second range. Rammsayer TH; Borter N; Troche SJ Front Psychol; 2015; 6():1626. PubMed ID: 26579013 [TBL] [Abstract][Full Text] [Related]
3. Self-Produced Time Intervals Are Perceived as More Variable and/or Shorter Depending on Temporal Context in Subsecond and Suprasecond Ranges. Mitani K; Kashino M Front Integr Neurosci; 2016; 10():19. PubMed ID: 27313515 [TBL] [Abstract][Full Text] [Related]
4. Visual-auditory differences in duration discrimination depend on modality-specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis. Rammsayer T; Pichelmann S Q J Exp Psychol (Hove); 2018 Nov; 71(11):2364-2377. PubMed ID: 30362412 [TBL] [Abstract][Full Text] [Related]
5. Using adaptive psychophysics to identify the neural network reset time in subsecond interval timing. Sadibolova R; Sun S; Terhune DB Exp Brain Res; 2021 Dec; 239(12):3565-3572. PubMed ID: 34581840 [TBL] [Abstract][Full Text] [Related]
6. Auditory Feedback Assists Mitani K; Kashino M Front Psychol; 2017; 8():2325. PubMed ID: 29403407 [TBL] [Abstract][Full Text] [Related]
7. A comparison of the brief international cognitive assessment for multiple sclerosis and the brief repeatable battery in multiple sclerosis patients. Niccolai C; Portaccio E; Goretti B; Hakiki B; Giannini M; Pastò L; Righini I; Falautano M; Minacapelli E; Martinelli V; Incerti C; Nocentini U; Fenu G; Cocco E; Marrosu MG; Garofalo E; Ambra FI; Maddestra M; Consalvo M; Viterbo RG; Trojano M; Losignore NA; Zimatore GB; Pietrolongo E; Lugaresi A; Pippolo L; Roscio M; Ghezzi A; Castellano D; Stecchi S; Amato MP BMC Neurol; 2015 Oct; 15():204. PubMed ID: 26472052 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the relationship between psychometric intelligence and cognitive functions in paediatric multiple sclerosis. Kapanci T; Rostásy K; Häusler MG; Geis T; Schimmel M; Elpers C; Kreth JH; Thiels C; Troche SJ Mult Scler J Exp Transl Clin; 2019; 5(4):2055217319894365. PubMed ID: 31853370 [TBL] [Abstract][Full Text] [Related]
9. Information processing efficiency in chronic fatigue syndrome and multiple sclerosis. DeLuca J; Johnson SK; Natelson BH Arch Neurol; 1993 Mar; 50(3):301-4. PubMed ID: 8442710 [TBL] [Abstract][Full Text] [Related]
10. Random Gap Detection Test and Random Gap Detection Test-Expanded results in children with auditory neuropathy. Yalçinkaya F; Muluk NB; Ataş A; Keith RW Int J Pediatr Otorhinolaryngol; 2009 Nov; 73(11):1558-63. PubMed ID: 19735949 [TBL] [Abstract][Full Text] [Related]
11. Modality-specific temporal constraints for state-dependent interval timing. Fornaciai M; Markouli E; Di Luca M Sci Rep; 2018 Jul; 8(1):10043. PubMed ID: 29968783 [TBL] [Abstract][Full Text] [Related]
12. Effects of pharmacologically induced changes in NMDA receptor activity on human timing and sensorimotor performance. Rammsayer TH Brain Res; 2006 Feb; 1073-1074():407-16. PubMed ID: 16423331 [TBL] [Abstract][Full Text] [Related]
13. Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model. Buonomano DV; Bramen J; Khodadadifar M Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1525):1865-73. PubMed ID: 19487189 [TBL] [Abstract][Full Text] [Related]
14. The dissociation of temporal processing behavior in concussion patients: Stable motor and dynamic perceptual timing. Bader F; Kochen WR; Kraus M; Wiener M Cortex; 2019 Oct; 119():215-230. PubMed ID: 31158558 [TBL] [Abstract][Full Text] [Related]
15. The Symbol Digit Modalities Test is an effective cognitive screen in pediatric onset multiple sclerosis (MS). Charvet LE; Beekman R; Amadiume N; Belman AL; Krupp LB J Neurol Sci; 2014 Jun; 341(1-2):79-84. PubMed ID: 24792098 [TBL] [Abstract][Full Text] [Related]
16. Is there a generalized timing impairment in Autism Spectrum Disorders across time scales and paradigms? Isaksson S; Salomäki S; Tuominen J; Arstila V; Falter-Wagner CM; Noreika V J Psychiatr Res; 2018 Apr; 99():111-121. PubMed ID: 29438910 [TBL] [Abstract][Full Text] [Related]
17. Impaired short temporal interval discrimination in a dyslexic adult. Rousseau L; Hébert S; Cuddy LL Brain Cogn; 2001; 46(1-2):249-54. PubMed ID: 11527342 [TBL] [Abstract][Full Text] [Related]
18. Impaired reproduction of second but not millisecond time intervals in Parkinson's disease. Koch G; Costa A; Brusa L; Peppe A; Gatto I; Torriero S; Gerfo EL; Salerno S; Oliveri M; Carlesimo GA; Caltagirone C Neuropsychologia; 2008 Apr; 46(5):1305-13. PubMed ID: 18215403 [TBL] [Abstract][Full Text] [Related]
19. Attentional Mechanisms during the Performance of a Subsecond Timing Task. Toscano-Zapién AL; Velázquez-López D; Velázquez-Martínez DN PLoS One; 2016; 11(7):e0158508. PubMed ID: 27467762 [TBL] [Abstract][Full Text] [Related]
20. Individual differences in first- and second-order temporal judgment. Corcoran AW; Groot C; Bruno A; Johnston A; Cropper SJ PLoS One; 2018; 13(2):e0191422. PubMed ID: 29401520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]