BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33193103)

  • 1. Comparative Analysis of Skeletal Muscle Transcriptional Signatures Associated With Aerobic Exercise Capacity or Response to Training in Humans and Rats.
    Kelahmetoglu Y; Jannig PR; Cervenka I; Koch LG; Britton SL; Zhou J; Wang H; Robinson MM; Nair KS; Ruas JL
    Front Endocrinol (Lausanne); 2020; 11():591476. PubMed ID: 33193103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle.
    Jones RG; Dimet-Wiley A; Haghani A; da Silva FM; Brightwell CR; Lim S; Khadgi S; Wen Y; Dungan CM; Brooke RT; Greene NP; Peterson CA; McCarthy JJ; Horvath S; Watowich SJ; Fry CS; Murach KA
    J Physiol; 2023 Feb; 601(4):763-782. PubMed ID: 36533424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle.
    Voisin S; Seale K; Jacques M; Landen S; Harvey NR; Haupt LM; Griffiths LR; Ashton KJ; Coffey VG; Thompson JM; Doering TM; Lindholm ME; Walsh C; Davison G; Irwin R; McBride C; Hansson O; Asplund O; Heikkinen AE; Piirilä P; Pietiläinen KH; Ollikainen M; Blocquiaux S; Thomis M; Coletta DK; Sharples AP; Eynon N
    Aging Cell; 2024 Jan; 23(1):e13859. PubMed ID: 37128843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute and long-term exercise adaptation of adipose tissue and skeletal muscle in humans: a matched transcriptomics approach after 8-week training-intervention.
    Dreher SI; Irmler M; Pivovarova-Ramich O; Kessler K; Jürchott K; Sticht C; Fritsche L; Schneeweiss P; Machann J; Pfeiffer AFH; Hrabě de Angelis M; Beckers J; Birkenfeld AL; Peter A; Niess AM; Weigert C; Moller A
    Int J Obes (Lond); 2023 Apr; 47(4):313-324. PubMed ID: 36774413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial multi-omic response to exercise training across rat tissues.
    Amar D; Gay NR; Jimenez-Morales D; Jean Beltran PM; Ramaker ME; Raja AN; Zhao B; Sun Y; Marwaha S; Gaul DA; Hershman SG; Ferrasse A; Xia A; Lanza I; Fernández FM; Montgomery SB; Hevener AL; Ashley EA; Walsh MJ; Sparks LM; Burant CF; Rector RS; Thyfault J; Wheeler MT; Goodpaster BH; Coen PM; Schenk S; Bodine SC; Lindholm ME;
    Cell Metab; 2024 Jun; 36(6):1411-1429.e10. PubMed ID: 38701776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of biological sex and sex hormones on molecular signatures of skeletal muscle at rest and in response to distinct exercise training modes.
    Pataky MW; Dasari S; Michie KL; Sevits KJ; Kumar AA; Klaus KA; Heppelmann CJ; Robinson MM; Carter RE; Lanza IR; Nair KS
    Cell Metab; 2023 Nov; 35(11):1996-2010.e6. PubMed ID: 37939659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiomics profiling of the impact of an angiotensin (1-7)-expressing probiotic combined with exercise training in aged male rats.
    Baptista LC; Zumbro EL; Graham ZA; Hernandez AR; Buchanan T; Sun Y; Yang Y; Banerjee A; Verma A; Li Q; Carter CS; Buford TW
    J Appl Physiol (1985); 2023 May; 134(5):1135-1153. PubMed ID: 36892893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of aging and aerobic capacity on energy metabolism-related metabolites of serum, skeletal muscle, and white adipose tissue.
    Zhuang H; Karvinen S; Törmäkangas T; Zhang X; Ojanen X; Velagapudi V; Alen M; Britton SL; Koch LG; Kainulainen H; Cheng S; Wiklund P
    Geroscience; 2021 Dec; 43(6):2679-2691. PubMed ID: 34089174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise reprograms the inflammatory landscape of multiple stem cell compartments during mammalian aging.
    Liu L; Kim S; Buckley MT; Reyes JM; Kang J; Tian L; Wang M; Lieu A; Mao M; Rodriguez-Mateo C; Ishak HD; Jeong M; Wu JC; Goodell MA; Brunet A; Rando TA
    Cell Stem Cell; 2023 May; 30(5):689-705.e4. PubMed ID: 37080206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures.
    Nair VD; Pincas H; Smith GR; Zaslavsky E; Ge Y; Amper MAS; Vasoya M; Chikina M; Sun Y; Raja AN; Mao W; Gay NR; Esser KA; Smith KS; Zhao B; Wiel L; Singh A; Lindholm ME; Amar D; Montgomery S; Snyder MP; Walsh MJ; Sealfon SC;
    Cell Genom; 2024 Jun; 4(6):100421. PubMed ID: 38697122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in human skeletal muscle transcriptome and proteome are more affected by chronic inflammation and physical inactivity than primary aging.
    Kurochkina NS; Orlova MA; Vigovskiy MA; Zgoda VG; Vepkhvadze TF; Vavilov NE; Makhnovskii PA; Grigorieva OA; Boroday YR; Philippov VV; Lednev EM; Efimenko AY; Popov DV
    Aging Cell; 2024 Apr; 23(4):e14098. PubMed ID: 38379415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling exercise using optogenetically contractible Drosophila larvae.
    Ghosh AC; Hu Y; Tattikota SG; Liu Y; Comjean A; Perrimon N
    BMC Genomics; 2022 Aug; 23(1):623. PubMed ID: 36042416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome features of striated muscle aging and predictability of protein level changes.
    Han Y; Li LZ; Kastury NL; Thomas CT; Lam MPY; Lau E
    Mol Omics; 2021 Oct; 17(5):796-808. PubMed ID: 34328155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle of young females under resistance exercise exhibits a unique innate immune cell infiltration profile compared to males and elderly individuals.
    Castrogiovanni P; Sanfilippo C; Imbesi R; Lazzarino G; Li Volti G; Tibullo D; Vicario N; Parenti R; Giuseppe L; Barbagallo I; Alanazi AM; Vecchio M; Cappello F; Musumeci G; Di Rosa M
    J Muscle Res Cell Motil; 2024 Apr; ():. PubMed ID: 38578562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated procedures for accelerating, deepening, and leading genetic inquiry: A first application on human muscle secretome.
    Bondi D; Bevere M; Piccirillo R; Sorci G; Di Felice V; Re Cecconi AD; D'Amico D; Pietrangelo T; Fulle S
    Mol Genet Metab; 2023 Nov; 140(3):107705. PubMed ID: 37837864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Links between Exercise Capacity, Exercise Training, and Metabolism.
    Spagnolo A; Klug S; Schenkl C; Schwarzer M
    Compr Physiol; 2023 Sep; 13(4):5115-5155. PubMed ID: 37770189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response.
    Lui TKL; Leung WK
    Gastrointest Endosc; 2024 May; 99(5):865. PubMed ID: 38649231
    [No Abstract]   [Full Text] [Related]  

  • 18. In Response.
    Mootz AA; Carvalho B; Sultan P; Nguyen TP; Reale SC
    Anesth Analg; 2024 Jun; 138(6):e37-e38. PubMed ID: 38771606
    [No Abstract]   [Full Text] [Related]  

  • 19. Exercise-Induced Autophagy Suppresses Sarcopenia Through Akt/mTOR and Akt/FoxO3a Signal Pathways and AMPK-Mediated Mitochondrial Quality Control.
    Zeng Z; Liang J; Wu L; Zhang H; Lv J; Chen N
    Front Physiol; 2020; 11():583478. PubMed ID: 33224037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Mechanisms of Skeletal Muscle Hypertrophy.
    Schiaffino S; Reggiani C; Akimoto T; Blaauw B
    J Neuromuscul Dis; 2021; 8(2):169-183. PubMed ID: 33216041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.