These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33193494)

  • 1. Endophyte-Promoted Phosphorus Solubilization in
    Varga T; Hixson KK; Ahkami AH; Sher AW; Barnes ME; Chu RK; Battu AK; Nicora CD; Winkler TE; Reno LR; Fakra SC; Antipova O; Parkinson DY; Hall JR; Doty SL
    Front Plant Sci; 2020; 11():567918. PubMed ID: 33193494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Communities of Poplar Endophytes on an Unpolluted and a Risk Element-Polluted Site and Their Plant Growth-Promoting Potential In Vitro.
    Schmidt CS; Lovecká P; Mrnka L; Vychodilová A; Strejček M; Fenclová M; Demnerová K
    Microb Ecol; 2018 May; 75(4):955-969. PubMed ID: 29127500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates.
    Oteino N; Lally RD; Kiwanuka S; Lloyd A; Ryan D; Germaine KJ; Dowling DN
    Front Microbiol; 2015; 6():745. PubMed ID: 26257721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees.
    Taghavi S; Garafola C; Monchy S; Newman L; Hoffman A; Weyens N; Barac T; Vangronsveld J; van der Lelie D
    Appl Environ Microbiol; 2009 Feb; 75(3):748-57. PubMed ID: 19060168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance.
    Verma SK; Sahu PK; Kumar K; Pal G; Gond SK; Kharwar RN; White JF
    J Appl Microbiol; 2021 Nov; 131(5):2161-2177. PubMed ID: 33893707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant diversity and litter accumulation mediate the loss of foliar endophyte fungal richness following nutrient addition.
    Henning JA; Kinkel L; May G; Lumibao CY; Seabloom EW; Borer ET
    Ecology; 2021 Jan; 102(1):e03210. PubMed ID: 32981067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance.
    Lacercat-Didier L; Berthelot C; Foulon J; Errard A; Martino E; Chalot M; Blaudez D
    Mycorrhiza; 2016 Oct; 26(7):657-71. PubMed ID: 27113586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phosphorus transfer between mixed poplar and black locust seedlings].
    He W; Jia L; Hao B; Wen X; Zhai M
    Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):481-6. PubMed ID: 12920885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth.
    Bononi L; Chiaramonte JB; Pansa CC; Moitinho MA; Melo IS
    Sci Rep; 2020 Feb; 10(1):2858. PubMed ID: 32071331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Phosphorus-dissolving Dark Septate Endophytes on the Growth of Blueberry.
    Luo Q; Hou R; Shang X; Li S
    J Microbiol; 2023 Sep; 61(9):837-851. PubMed ID: 37796392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An endophytic microbe from an unusual volcanic swamp corn seeks and inhabits root hair cells to extract rock phosphate.
    Shehata HR; Dumigan C; Watts S; Raizada MN
    Sci Rep; 2017 Oct; 7(1):13479. PubMed ID: 29044186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils.
    Schmidt CS; Mrnka L; Frantík T; Lovecká P; Vosátka M
    World J Microbiol Biotechnol; 2018 Mar; 34(3):48. PubMed ID: 29536268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oak (
    Vaitiekūnaitė D; Kuusienė S; Beniušytė E
    Microorganisms; 2021 May; 9(6):. PubMed ID: 34072105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential.
    Sánchez-Cruz R; Tpia Vázquez I; Batista-García RA; Méndez-Santiago EW; Sánchez-Carbente MDR; Leija A; Lira-Ruan V; Hernández G; Wong-Villarreal A; Folch-Mallol JL
    Microbiol Res; 2019 Jan; 218():76-86. PubMed ID: 30454661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture.
    Timofeeva A; Galyamova M; Sedykh S
    Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms.
    Pang F; Li Q; Solanki MK; Wang Z; Xing YX; Dong DF
    Front Microbiol; 2024; 15():1383813. PubMed ID: 38601943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria.
    Pantigoso HA; Manter DK; Fonte SJ; Vivanco JM
    Sci Rep; 2023 Mar; 13(1):4050. PubMed ID: 36899103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maize endophytic bacteria as mineral phosphate solubilizers.
    de Abreu CS; Figueiredo JE; Oliveira CA; Dos Santos VL; Gomes EA; Ribeiro VP; Barros BA; Lana UG; Marriel IE
    Genet Mol Res; 2017 Feb; 16(1):. PubMed ID: 28218783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large effect of phosphate-solubilizing bacteria on the growth and gene expression of
    Koczorski P; Furtado BU; Baum C; Weih M; Ingvarsson P; Hulisz P; Hrynkiewicz K
    Front Plant Sci; 2023; 14():1218617. PubMed ID: 37705708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.