These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 33193507)
1. Physiological and Transcriptome Analysis of Sugar Beet Reveals Different Mechanisms of Response to Neutral Salt and Alkaline Salt Stresses. Geng G; Li R; Stevanato P; Lv C; Lu Z; Yu L; Wang Y Front Plant Sci; 2020; 11():571864. PubMed ID: 33193507 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations. Cui J; Li J; Dai C; Li L Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076993 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Zou C; Liu D; Wu P; Wang Y; Gai Z; Liu L; Yang F; Li C; Guo G Plant Mol Biol; 2020 Apr; 102(6):645-657. PubMed ID: 32040759 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. Liu L; Wang B; Liu D; Zou C; Wu P; Wang Z; Wang Y; Li C BMC Plant Biol; 2020 Apr; 20(1):138. PubMed ID: 32245415 [TBL] [Abstract][Full Text] [Related]
5. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor. Skorupa M; Gołębiewski M; Kurnik K; Niedojadło J; Kęsy J; Klamkowski K; Wójcik K; Treder W; Tretyn A; Tyburski J BMC Plant Biol; 2019 Feb; 19(1):57. PubMed ID: 30727960 [TBL] [Abstract][Full Text] [Related]
6. Low nitrogen stress-induced transcriptome changes revealed the molecular response and tolerance characteristics in maintaining the C/N balance of sugar beet ( Li J; Liu X; Xu L; Li W; Yao Q; Yin X; Wang Q; Tan W; Xing W; Liu D Front Plant Sci; 2023; 14():1164151. PubMed ID: 37152145 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet. Geng G; Lv C; Stevanato P; Li R; Liu H; Yu L; Wang Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775274 [TBL] [Abstract][Full Text] [Related]
8. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Lv X; Jin Y; Wang Y Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503 [TBL] [Abstract][Full Text] [Related]
9. Physiological Analysis and Transcriptome Sequencing Reveal the Effects of Salt Stress on Banana ( Wei J; Liu D; Liu Y; Wei S Front Plant Sci; 2022; 13():822838. PubMed ID: 35498665 [TBL] [Abstract][Full Text] [Related]
10. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Yu Y; Huang W; Chen H; Wu G; Yuan H; Song X; Kang Q; Zhao D; Jiang W; Liu Y; Wu J; Cheng L; Yao Y; Guan F Gene; 2014 Oct; 549(1):113-22. PubMed ID: 25058012 [TBL] [Abstract][Full Text] [Related]
11. Unique Features of the m Li J; Pang Q; Yan X Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511417 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome Analysis of Gossypium hirsutum L. Reveals Different Mechanisms among NaCl, NaOH and Na Zhang B; Chen X; Lu X; Shu N; Wang X; Yang X; Wang S; Wang J; Guo L; Wang D; Ye W Sci Rep; 2018 Sep; 8(1):13527. PubMed ID: 30202076 [TBL] [Abstract][Full Text] [Related]
13. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification, phylogenetic classification of histone acetyltransferase genes, and their expression analysis in sugar beet (Beta vulgaris L.) under salt stress. Yolcu S; Skorupa M; Uras ME; Mazur J; Ozyiğit II Planta; 2024 Mar; 259(4):85. PubMed ID: 38448714 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of Sugar Beet Response to Biotic and Abiotic Stresses. Yu B; Chen M; Grin I; Ma C Adv Exp Med Biol; 2020; 1241():167-194. PubMed ID: 32383121 [TBL] [Abstract][Full Text] [Related]
16. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. Guo R; Shi L; Yan C; Zhong X; Gu F; Liu Q; Xia X; Li H BMC Plant Biol; 2017 Feb; 17(1):41. PubMed ID: 28187710 [TBL] [Abstract][Full Text] [Related]
17. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Liu H; Wang Q; Yu M; Zhang Y; Wu Y; Zhang H Plant Cell Environ; 2008 Sep; 31(9):1325-34. PubMed ID: 18518917 [TBL] [Abstract][Full Text] [Related]
18. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance. Wang Y; Stevanato P; Lv C; Li R; Geng G J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911 [TBL] [Abstract][Full Text] [Related]
19. Analysis of N Li J; Wang J; Pang Q; Yan X Plant Sci; 2023 Oct; 335():111794. PubMed ID: 37459955 [TBL] [Abstract][Full Text] [Related]
20. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Wang Y; Wang J; Guo D; Zhang H; Che Y; Li Y; Tian B; Wang Z; Sun G; Zhang H Plant Physiol Biochem; 2021 Oct; 167():140-152. PubMed ID: 34352517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]