These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33193549)

  • 1. Horizontal Stacking of
    Holme IB; Madsen CK; Wendt T; Brinch-Pedersen H
    Front Plant Sci; 2020; 11():592139. PubMed ID: 33193549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs.
    Holme IB; Wendt T; Gil-Humanes J; Deleuran LC; Starker CG; Voytas DF; Brinch-Pedersen H
    Plant Mol Biol; 2017 Sep; 95(1-2):111-121. PubMed ID: 28755320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene.
    Madsen CK; Dionisio G; Holme IB; Holm PB; Brinch-Pedersen H
    J Exp Bot; 2013 Aug; 64(11):3111-23. PubMed ID: 23918958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P and Ca digestibility is increased in broiler diets supplemented with the high-phytase HIGHPHY wheat.
    Scholey D; Burton E; Morgan N; Sanni C; Madsen CK; Dionisio G; Brinch-Pedersen H
    Animal; 2017 Sep; 11(9):1457-1463. PubMed ID: 28318476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.
    Dionisio G; Madsen CK; Holm PB; Welinder KG; Jørgensen M; Stoger E; Arcalis E; Brinch-Pedersen H
    Plant Physiol; 2011 Jul; 156(3):1087-100. PubMed ID: 21220762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Advances on Phytases in Barley and Wheat.
    Madsen CK; Brinch-Pedersen H
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31109025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.
    Holme IB; Dionisio G; Madsen CK; Brinch-Pedersen H
    Plant Biotechnol J; 2017 Apr; 15(4):415-422. PubMed ID: 27633382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cisgenic barley with improved phytase activity.
    Holme IB; Dionisio G; Brinch-Pedersen H; Wendt T; Madsen CK; Vincze E; Holm PB
    Plant Biotechnol J; 2012 Feb; 10(2):237-47. PubMed ID: 21955685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized barley phytase gene expression by focused FIND-IT screening for mutations in
    Madsen CK; Brearley CA; Harholt J; Brinch-Pedersen H
    Front Plant Sci; 2024; 15():1372049. PubMed ID: 38495373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants.
    Faba-Rodriguez R; Gu Y; Salmon M; Dionisio G; Brinch-Pedersen H; Brearley CA; Hemmings AM
    Plant Commun; 2022 Mar; 3(2):100305. PubMed ID: 35529950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different site-specific N-glycan types in wheat (Triticum aestivum L.) PAP phytase.
    Dionisio G; Brinch-Pedersen H; Welinder KG; Jørgensen M
    Phytochemistry; 2011 Jul; 72(10):1173-9. PubMed ID: 21329951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in phytase research.
    Mullaney EJ; Daly CB; Ullah AH
    Adv Appl Microbiol; 2000; 47():157-99. PubMed ID: 12876797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of microbial phytase on standardized total tract digestibility of phosphorus in hybrid rye, barley, wheat, corn, and sorghum fed to growing pigs.
    McGhee ML; Stein HH
    Transl Anim Sci; 2019 Jul; 3(4):1238-1245. PubMed ID: 32704887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplements of transgenic malt or grain containing (1,3-1,4)-beta-glucanase increase the nutritive value of barley-based broiler diets to that of maize.
    Von Wettstein D; Warner J; Kannangara CG
    Br Poult Sci; 2003 Jul; 44(3):438-49. PubMed ID: 12964628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of potential interactions between phytase and glycosidase enzyme supplementation on nutrient digestibility in broilers.
    Juanpere J; Pérez-Vendrell AM; Angulo E; Brufau J
    Poult Sci; 2005 Apr; 84(4):571-80. PubMed ID: 15844813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of feeding acidified or fermented barley using Limosilactobacillus reuteri with or without supplemental phytase on diet nutrient digestibility in growing pigs.
    Heyer CME; Wang LF; Beltranena E; Gänzle MG; Zijlstra RT
    J Anim Sci; 2021 Jul; 99(7):. PubMed ID: 34014304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of several germination conditions on total P, phytate P, phytase, and acid phosphatase activities and inositol phosphate esters in rye and barley.
    Centeno C; Viveros A; Brenes A; Canales R; Lozano A; de la Cuadra C
    J Agric Food Chem; 2001 Jul; 49(7):3208-15. PubMed ID: 11453753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination.
    Dionisio G; Holm PB; Brinch-Pedersen H
    Plant Biotechnol J; 2007 Mar; 5(2):325-38. PubMed ID: 17309687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylations and truncations of functional cereal phytases expressed and secreted by Pichia pastoris documented by mass spectrometry.
    Dionisio G; Jørgensen M; Welinder KG; Brinch-Pedersen H
    Protein Expr Purif; 2012 Mar; 82(1):179-85. PubMed ID: 22240269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of grain source and exogenous phytase on phosphorus digestibility in dairy cows.
    Kincaid RL; Garikipati DK; Nennich TD; Harrison JH
    J Dairy Sci; 2005 Aug; 88(8):2893-902. PubMed ID: 16027204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.