BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33193567)

  • 1. Identification and Functional Analysis of Long Non-coding RNAs in Autism Spectrum Disorders.
    Tong Z; Zhou Y; Wang J
    Front Genet; 2020; 11():849. PubMed ID: 33193567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-expression of long non-coding RNAs and autism risk genes in the developing human brain.
    Cogill SB; Srivastava AK; Yang MQ; Wang L
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):91. PubMed ID: 30547845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative genomic analyses for identification and prioritization of long non-coding RNAs associated with autism.
    Gudenas BL; Srivastava AK; Wang L
    PLoS One; 2017; 12(5):e0178532. PubMed ID: 28562671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and prioritization of autism-associated long non-coding RNAs using gene expression and sequence features.
    Wang J; Wang L
    BMC Bioinformatics; 2020 Nov; 21(1):505. PubMed ID: 33160303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining multi-omics approaches to prioritize the variant-regulated functional long non-coding RNAs in autism spectrum disorder.
    Wang H; Wu X; Chen Y; Hou F; Zhu K; Jiang Q; Xiao P; Zhang Q; Xiang Z; Fan Y; Xie X; Li L; Song R
    Asian J Psychiatr; 2023 Feb; 80():103357. PubMed ID: 36462391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative analysis of long noncoding RNAs dysregulation and synapse-associated ceRNA regulatory axes in autism.
    Jiang M; Wang Z; Lu T; Li X; Yang K; Zhao L; Zhang D; Li J; Wang L
    Transl Psychiatry; 2023 Dec; 13(1):375. PubMed ID: 38057311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin A supplementation ameliorates prenatal valproic acid-induced autism-like behaviors in rats.
    Liu Z; Wang J; Xu Q; Wu Z; You L; Hong Q; Zhu J; Chi X
    Neurotoxicology; 2022 Jul; 91():155-165. PubMed ID: 35594946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excavating novel diagnostic and prognostic long non-coding RNAs (lncRNAs) for head and neck squamous cell carcinoma: an integrated bioinformatics analysis of competing endogenous RNAs (ceRNAs) and gene co-expression networks.
    Yang L; Lu P; Yang X; Li K; Chen X; Qu S
    Bioengineered; 2021 Dec; 12(2):12821-12838. PubMed ID: 34898376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Functional Analysis Implicates Syndromic and Rare Copy Number Variation Genes as Prominent Molecular Players in Pathogenesis of Autism Spectrum Disorders.
    Ashitha SNM; Ramachandra NB
    Neuroscience; 2020 Jul; 438():25-40. PubMed ID: 32407977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel risk score system for assessment of ovarian cancer based on co-expression network analysis and expression level of five lncRNAs.
    Zhao Q; Fan C
    BMC Med Genet; 2019 Jun; 20(1):103. PubMed ID: 31182053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of an immune-related ceRNA network to screen for potential diagnostic markers for autism spectrum disorder.
    Sun JJ; Chen B; Yu T
    Front Genet; 2022; 13():1025813. PubMed ID: 36468003
    [No Abstract]   [Full Text] [Related]  

  • 12. Aberrant expression of long noncoding RNAs in autistic brain.
    Ziats MN; Rennert OM
    J Mol Neurosci; 2013 Mar; 49(3):589-93. PubMed ID: 22949041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of non-protein-coding antisense RNAs in genomic regions related to autism spectrum disorders.
    Velmeshev D; Magistri M; Faghihi MA
    Mol Autism; 2013 Sep; 4(1):32. PubMed ID: 24007600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association study and identification of chromosomal enhancer maps in multiple brain regions related to autism spectrum disorder.
    Zhang L; Liu L; Wen Y; Ma M; Cheng S; Yang J; Li P; Cheng B; Du Y; Liang X; Zhao Y; Ding M; Guo X; Zhang F
    Autism Res; 2019 Jan; 12(1):26-32. PubMed ID: 30157312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative analysis of transcriptome-wide association study and mRNA expression profiles identifies candidate genes associated with autism spectrum disorders.
    Huang H; Cheng S; Ding M; Wen Y; Ma M; Zhang L; Li P; Cheng B; Liang X; Liu L; Du Y; Zhao Y; Kafle OP; Han B; Zhang F
    Autism Res; 2019 Jan; 12(1):33-38. PubMed ID: 30561910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated analysis of differentially expressed genes and construction of a competing endogenous RNA network in human Huntington neural progenitor cells.
    Tan X; Liu Y; Zhang T; Cong S
    BMC Med Genomics; 2021 Feb; 14(1):48. PubMed ID: 33579286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Analysis of Brain Transcriptome Reveals Convergent Molecular Pathways in Autism Spectrum Disorder.
    Li X; Zhang Y; Wang L; Lin Y; Gao Z; Zhan X; Huang Y; Sun C; Wang D; Liang S; Wu L
    Front Psychiatry; 2019; 10():706. PubMed ID: 31649562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer.
    Wang H; Zhao Y; Chen M; Cui J
    Front Microbiol; 2017; 8():1720. PubMed ID: 28970820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder.
    Wang Y; Zhao X; Ju W; Flory M; Zhong J; Jiang S; Wang P; Dong X; Tao X; Chen Q; Shen C; Zhong M; Yu Y; Brown WT; Zhong N
    Transl Psychiatry; 2015 Oct; 5(10):e660. PubMed ID: 26485544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Effect of Differentially Expressed Long Non-coding RNAs Driven by Copy Number Variation on Competing Endogenous RNA Network by Mining Lung Adenocarcinoma Data.
    Hu H; Xu H; Lu F; Zhang J; Xu L; Xu S; Jiang H; Zeng Q; Chen E; He Z
    Front Cell Dev Biol; 2020; 8():627436. PubMed ID: 33585468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.