These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 33193610)

  • 1. Genetic Constraints, Transcriptome Plasticity, and the Evolutionary Response to Climate Change.
    Logan ML; Cox CL
    Front Genet; 2020; 11():538226. PubMed ID: 33193610
    [No Abstract]   [Full Text] [Related]  

  • 2. Heritability of climate-relevant traits in a rainforest skink.
    Martins F; Kruuk L; Llewelyn J; Moritz C; Phillips B
    Heredity (Edinb); 2019 Jan; 122(1):41-52. PubMed ID: 29789644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change.
    Diamond SE
    Ann N Y Acad Sci; 2017 Feb; 1389(1):5-19. PubMed ID: 27706832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary constraints mediate extinction risk under climate change.
    Garcia-Costoya G; Williams CE; Faske TM; Moorman JD; Logan ML
    Ecol Lett; 2023 Apr; 26(4):529-539. PubMed ID: 36756845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic compensation rather than genetic assimilation drives the evolution of plasticity in response to mild warming across latitudes in a damselfly.
    Swaegers J; Spanier KI; Stoks R
    Mol Ecol; 2020 Dec; 29(24):4823-4834. PubMed ID: 33031581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity of Gene Expression and Thermal Tolerance: Implications for Climate Change Vulnerability in a Tropical Forest Lizard.
    Rosso AA; Casement B; Chung AK; Curlis JD; Folfas E; Gallegos MA; Neel LK; Nicholson DJ; Williams CE; McMillan WO; Logan ML; Cox CL
    Ecol Evol Physiol; 2024; 97(2):81-96. PubMed ID: 38728692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod.
    Sasaki MC; Dam HG
    Glob Chang Biol; 2019 Dec; 25(12):4147-4164. PubMed ID: 31449341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift.
    Leonard AM; Lancaster LT
    BMC Evol Biol; 2020 Apr; 20(1):47. PubMed ID: 32326878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adaptive potential of subtropical rainbowfish in the face of climate change: heritability and heritable plasticity for the expression of candidate genes.
    McCairns RJ; Smith S; Sasaki M; Bernatchez L; Beheregaray LB
    Evol Appl; 2016 Apr; 9(4):531-45. PubMed ID: 27099620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.
    Clemson AS; Sgrò CM; Telonis-Scott M
    J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest Drosophila species.
    van Heerwaarden B; Malmberg M; Sgrò CM
    Evolution; 2016 Feb; 70(2):456-64. PubMed ID: 26703976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments.
    Chen Z; Farrell AP; Matala A; Narum SR
    Mol Ecol; 2018 Feb; 27(3):659-674. PubMed ID: 29290103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural selection on thermal preference, critical thermal maxima and locomotor performance.
    Gilbert AL; Miles DB
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28814653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change.
    Diamond SE; Martin RA
    J Exp Biol; 2021 Feb; 224(Pt Suppl 1):. PubMed ID: 33627462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in
    Healy TM; Bock AK; Burton RS
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31597734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does thermal plasticity align with local adaptation? An interspecific comparison of wing morphology in sepsid flies.
    Rohner PT; Roy J; Schäfer MA; Blanckenhorn WU; Berger D
    J Evol Biol; 2019 May; 32(5):463-475. PubMed ID: 30776168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity.
    Comte L; Olden JD
    Glob Chang Biol; 2017 Feb; 23(2):728-736. PubMed ID: 27406402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes.
    Schilthuizen M; Kellermann V
    Evol Appl; 2014 Jan; 7(1):56-67. PubMed ID: 24454548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.