These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 33193615)

  • 1. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion.
    Fan C; Lei X; Pan Y
    Front Genet; 2020; 11():540751. PubMed ID: 33193615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network.
    Ma Z; Kuang Z; Deng L
    BMC Bioinformatics; 2021 Nov; 22(1):551. PubMed ID: 34772332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations.
    Lei X; Fang Z; Chen L; Wu FX
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Bipartite Network Projection and KATZ Measure to Identify Novel CircRNA-Disease Associations.
    Zhao Q; Yang Y; Ren G; Ge E; Fan C
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):578-584. PubMed ID: 31199265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations.
    Yan C; Wang J; Wu FX
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):520. PubMed ID: 30598076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network.
    Deepthi K; Jereesh AS
    Gene; 2020 Dec; 762():145040. PubMed ID: 32777520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.
    Li J; Liu T; Wang J; Li Q; Ning C; Yang Y
    Artif Intell Med; 2021 Aug; 118():102115. PubMed ID: 34412838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network.
    Peng L; Yang C; Chen Y; Liu W
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying circRNA-miRNA interaction based on multi-biological interaction fusion.
    Yao D; Nong L; Qin M; Wu S; Yao S
    Front Microbiol; 2022; 13():987930. PubMed ID: 36620017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks.
    Fan C; Lei X; Wu FX
    Int J Biol Sci; 2018; 14(14):1950-1959. PubMed ID: 30585259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction.
    Shang J; Zhao L; He X; Meng X; Zhang L; Ge D; Li F; Liu JX
    IEEE J Biomed Health Inform; 2024 Nov; 28(11):7006-7014. PubMed ID: 39250355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
    Wang H; Han J; Li H; Duan L; Liu Z; Cheng H
    Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding.
    Guo LX; You ZH; Wang L; Yu CQ; Zhao BW; Ren ZH; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network.
    Bian C; Lei XJ; Wu FX
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting human disease-associated circRNAs based on locality-constrained linear coding.
    Ge E; Yang Y; Gang M; Fan C; Zhao Q
    Genomics; 2020 Mar; 112(2):1335-1342. PubMed ID: 31394170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.