These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 33193615)

  • 21. GBDTCDA: Predicting circRNA-disease Associations Based on Gradient Boosting Decision Tree with Multiple Biological Data Fusion.
    Lei X; Fang Z
    Int J Biol Sci; 2019; 15(13):2911-2924. PubMed ID: 31853227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions.
    He J; Xiao P; Chen C; Zhu Z; Zhang J; Deng L
    Front Genet; 2022; 13():959701. PubMed ID: 35991563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations.
    Guo LX; Wang L; You ZH; Yu CQ; Hu ML; Zhao BW; Li Y
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks.
    Zhang B; Wang H; Ma C; Huang H; Fang Z; Qu J
    BMC Bioinformatics; 2024 Oct; 25(1):332. PubMed ID: 39407120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs.
    Chen Y; Wang Y; Ding Y; Su X; Wang C
    Comput Biol Med; 2022 Apr; 143():105322. PubMed ID: 35217342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework.
    Xiao Q; Luo J; Dai J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Matrix factorization with neural network for predicting circRNA-RBP interactions.
    Wang Z; Lei X
    BMC Bioinformatics; 2020 Jun; 21(1):229. PubMed ID: 32503474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning.
    Li G; Zeng F; Luo J; Liang C; Xiao Q
    BMC Med Inform Decis Mak; 2023 Dec; 23(1):291. PubMed ID: 38110886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining K Nearest Neighbor With Nonnegative Matrix Factorization for Predicting Circrna-Disease Associations.
    Wang MN; Xie XJ; You ZH; Wong L; Li LP; Chen ZH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2610-2618. PubMed ID: 35675235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association.
    Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iCircDA-NEAE: Accelerated attribute network embedding and dynamic convolutional autoencoder for circRNA-disease associations prediction.
    Yuan L; Zhao J; Shen Z; Zhang Q; Geng Y; Zheng CH; Huang DS
    PLoS Comput Biol; 2023 Aug; 19(8):e1011344. PubMed ID: 37651321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Double matrix completion for circRNA-disease association prediction.
    Zuo ZL; Cao RF; Wei PJ; Xia JF; Zheng CH
    BMC Bioinformatics; 2021 Jun; 22(1):307. PubMed ID: 34103016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential circRNA-disease association prediction using DeepWalk and network consistency projection.
    Li G; Luo J; Wang D; Liang C; Xiao Q; Ding P; Chen H
    J Biomed Inform; 2020 Dec; 112():103624. PubMed ID: 33217543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting circRNA-Disease Associations Based on circRNA Expression Similarity and Functional Similarity.
    Wang Y; Nie C; Zang T; Wang Y
    Front Genet; 2019; 10():832. PubMed ID: 31572444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path.
    Chen L; Zhao X
    Math Biosci Eng; 2023 Nov; 20(12):20553-20575. PubMed ID: 38124565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.