BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33193700)

  • 1. Chromatin Landscape During Skeletal Muscle Differentiation.
    Hernández-Hernández O; Ávila-Avilés RD; Hernández-Hernández JM
    Front Genet; 2020; 11():578712. PubMed ID: 33193700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of MyoD Interactome Using Tandem Affinity Purification Coupled to Mass Spectrometry.
    Boyarchuk E; Robin P; Fritsch L; Joliot V; Ait-Si-Ali S
    J Vis Exp; 2016 May; (111):. PubMed ID: 27286495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal regulation of chromatin during myoblast differentiation.
    Harada A; Ohkawa Y; Imbalzano AN
    Semin Cell Dev Biol; 2017 Dec; 72():77-86. PubMed ID: 29079444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors.
    Wang C; Wang M; Arrington J; Shan T; Yue F; Nie Y; Tao WA; Kuang S
    Development; 2017 Jan; 144(2):235-247. PubMed ID: 27993983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic regulation of skeletal muscle development and differentiation.
    Bharathy N; Ling BM; Taneja R
    Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification.
    Jin W; Peng J; Jiang S
    Biochem Biophys Rep; 2016 Jul; 6():209-219. PubMed ID: 28955879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation.
    Segalés J; Islam AB; Kumar R; Liu QC; Sousa-Victor P; Dilworth FJ; Ballestar E; Perdiguero E; Muñoz-Cánoves P
    Skelet Muscle; 2016; 6():9. PubMed ID: 26981231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master.
    Sartorelli V; Puri PL
    Mol Cell; 2018 Aug; 71(3):375-388. PubMed ID: 29887393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors.
    Singh K; Dilworth FJ
    FEBS J; 2013 Sep; 280(17):3991-4003. PubMed ID: 23419170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet releasate promotes skeletal myogenesis by increasing muscle stem cell commitment to differentiation and accelerates muscle regeneration following acute injury.
    Scully D; Sfyri P; Verpoorten S; Papadopoulos P; Muñoz-Turrillas MC; Mitchell R; Aburima A; Patel K; Gutiérrez L; Naseem KM; Matsakas A
    Acta Physiol (Oxf); 2019 Mar; 225(3):e13207. PubMed ID: 30339324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis.
    Zammit PS
    Semin Cell Dev Biol; 2017 Dec; 72():19-32. PubMed ID: 29127046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease.
    Shi DL; Grifone R
    Front Cell Dev Biol; 2021; 9():738978. PubMed ID: 34616743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo.
    Dodou E; Xu SM; Black BL
    Mech Dev; 2003 Sep; 120(9):1021-32. PubMed ID: 14550531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery.
    Asfour HA; Allouh MZ; Said RS
    Exp Biol Med (Maywood); 2018 Jan; 243(2):118-128. PubMed ID: 29307280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the epigenetic control of satellite cells.
    Moresi V; Marroncelli N; Adamo S
    World J Stem Cells; 2015 Jul; 7(6):945-55. PubMed ID: 26240681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and cellular regulation of skeletal myogenesis.
    Comai G; Tajbakhsh S
    Curr Top Dev Biol; 2014; 110():1-73. PubMed ID: 25248473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Early stages of myogenesis as seen through the action of the myf-5 gene].
    Buckingham M
    C R Seances Soc Biol Fil; 1997; 191(1):43-54. PubMed ID: 9181127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interactions of proliferation and differentiation signaling pathways in myogenesis].
    Milewska M; Grabiec K; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2014 May; 68():516-26. PubMed ID: 24864103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the transcriptional signature of skeletal muscle stem cells.
    Yablonka-Reuveni Z; Day K; Vine A; Shefer G
    J Anim Sci; 2008 Apr; 86(14 Suppl):E207-16. PubMed ID: 17878281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.