BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33193700)

  • 21. Epigenetic Control of Muscle Stem Cells: Focus on Histone Lysine Demethylases.
    Cicciarello D; Schaeffer L; Scionti I
    Front Cell Dev Biol; 2022; 10():917771. PubMed ID: 35669509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis.
    Chakroun I; Yang D; Girgis J; Gunasekharan A; Phenix H; Kærn M; Blais A
    FASEB J; 2015 Nov; 29(11):4738-55. PubMed ID: 26229056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration.
    Hernández-Hernández JM; García-González EG; Brun CE; Rudnicki MA
    Semin Cell Dev Biol; 2017 Dec; 72():10-18. PubMed ID: 29127045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ubiquitin-specific protease 4 (USP4) suppresses myoblast differentiation by down regulating MyoD activity in a catalytic-independent manner.
    Yun SI; Kim KK
    Cell Signal; 2017 Jul; 35():48-60. PubMed ID: 28336234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization.
    Langen RC; Van Der Velden JL; Schols AM; Kelders MC; Wouters EF; Janssen-Heininger YM
    FASEB J; 2004 Feb; 18(2):227-37. PubMed ID: 14769817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.
    Langlois S; Cowan KN
    Adv Exp Med Biol; 2017; 925():57-73. PubMed ID: 27518505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin modification and muscle differentiation.
    Yahi H; Philipot O; Guasconi V; Fritsch L; Ait-Si-Ali S
    Expert Opin Ther Targets; 2006 Dec; 10(6):923-34. PubMed ID: 17105377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular regulation of myogenesis.
    Sabourin LA; Rudnicki MA
    Clin Genet; 2000 Jan; 57(1):16-25. PubMed ID: 10733231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells.
    Cornelison DD; Wold BJ
    Dev Biol; 1997 Nov; 191(2):270-83. PubMed ID: 9398440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation.
    Hamed M; Khilji S; Dixon K; Blais A; Ioshikhes I; Chen J; Li Q
    Nucleic Acids Res; 2017 Nov; 45(19):11236-11248. PubMed ID: 28981706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus.
    de Las Heras-Saldana S; Chung KY; Lee SH; Gondro C
    BMC Genomics; 2019 Feb; 20(1):156. PubMed ID: 30808286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers.
    Hawke TJ; Atkinson DJ; Kanatous SB; Van der Ven PF; Goetsch SC; Garry DJ
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1636-44. PubMed ID: 17855775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pax7 remodels the chromatin landscape in skeletal muscle stem cells.
    Lilja KC; Zhang N; Magli A; Gunduz V; Bowman CJ; Arpke RW; Darabi R; Kyba M; Perlingeiro R; Dynlacht BD
    PLoS One; 2017; 12(4):e0176190. PubMed ID: 28441415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal regulation of the Mediator complex during muscle proliferation, differentiation, regeneration, aging, and disease.
    Kolonay DW; Sattler KM; Strawser C; Rafael-Fortney J; Mihaylova MM; Miller KE; Lepper C; Baskin KK
    Front Cell Dev Biol; 2024; 12():1331563. PubMed ID: 38690566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche.
    Kowalski K; Dos Santos M; Maire P; Ciemerych MA; Brzoska E
    Stem Cell Res Ther; 2018 Sep; 9(1):258. PubMed ID: 30261919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration.
    Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB
    Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embryonic myogenesis pathways in muscle regeneration.
    Zhao P; Hoffman EP
    Dev Dyn; 2004 Feb; 229(2):380-92. PubMed ID: 14745964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetic control of adult skeletal muscle stem cell functions.
    Segalés J; Perdiguero E; Muñoz-Cánoves P
    FEBS J; 2015 May; 282(9):1571-88. PubMed ID: 25251895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest.
    Zalc A; Hayashi S; Auradé F; Bröhl D; Chang T; Mademtzoglou D; Mourikis P; Yao Z; Cao Y; Birchmeier C; Relaix F
    Development; 2014 Jul; 141(14):2780-90. PubMed ID: 25005473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway.
    Segalés J; Perdiguero E; Muñoz-Cánoves P
    Front Cell Dev Biol; 2016; 4():91. PubMed ID: 27626031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.