These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33193847)
1. A model for predicting prognosis in patients with esophageal squamous cell carcinoma based on joint representation learning. Yu J; Wu X; Lv M; Zhang Y; Zhang X; Li J; Zhu M; Huang J; Zhang Q Oncol Lett; 2020 Dec; 20(6):387. PubMed ID: 33193847 [TBL] [Abstract][Full Text] [Related]
2. Deep learning-based model for predicting progression in patients with head and neck squamous cell carcinoma. Zhao Z; Li Y; Wu Y; Chen R Cancer Biomark; 2020; 27(1):19-28. PubMed ID: 31658045 [TBL] [Abstract][Full Text] [Related]
3. Construction of mRNA prognosis signature associated with differentially expressed genes in early stage of stomach adenocarcinomas based on TCGA and GEO datasets. Jiang F; Lin H; Yan H; Sun X; Yang J; Dong M Eur J Med Res; 2022 Oct; 27(1):205. PubMed ID: 36253873 [TBL] [Abstract][Full Text] [Related]
4. A 10‑microRNA prognosis scoring system in esophageal squamous cell carcinoma constructed using bioinformatic methods. Sun Q; Zong L; Zhang H; Deng Y; Zhang C; Zhang L Mol Med Rep; 2018 Apr; 17(4):5222-5228. PubMed ID: 29393486 [TBL] [Abstract][Full Text] [Related]
5. Construction and Evaluation of a Risk Score Model for Lymph Node Metastasis-Associated Circadian Clock Genes in Esophageal Squamous Carcinoma. Cheng J; Chen F; Cheng Y Cells; 2022 Oct; 11(21):. PubMed ID: 36359828 [TBL] [Abstract][Full Text] [Related]
6. Identification of key genes for esophageal squamous cell carcinoma via integrated bioinformatics analysis and experimental confirmation. Hu J; Li R; Miao H; Wen Z J Thorac Dis; 2020 Jun; 12(6):3188-3199. PubMed ID: 32642240 [TBL] [Abstract][Full Text] [Related]
7. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Song H; Ruan C; Xu Y; Xu T; Fan R; Jiang T; Cao M; Song J Exp Biol Med (Maywood); 2022 Jun; 247(11):898-909. PubMed ID: 34904882 [TBL] [Abstract][Full Text] [Related]
8. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma. Li MX; Sun XM; Cheng WG; Ruan HJ; Liu K; Chen P; Xu HJ; Gao SG; Feng XS; Qi YJ BMC Cancer; 2021 Aug; 21(1):906. PubMed ID: 34372798 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of a Prognostic Gene Signature Correlated With M2 Macrophage Infiltration in Esophageal Squamous Cell Carcinoma. Yao J; Duan L; Huang X; Liu J; Fan X; Xiao Z; Yan R; Liu H; An G; Hu B; Ge Y Front Oncol; 2021; 11():769727. PubMed ID: 34926275 [TBL] [Abstract][Full Text] [Related]
10. A novel immune-related gene signature predicts survival in esophageal squamous cell carcinoma. Xu T; Dai T; Zeng P; Guo Y; He K Transl Cancer Res; 2021 May; 10(5):2354-2367. PubMed ID: 35116551 [TBL] [Abstract][Full Text] [Related]
11. Predicting the Lung Squamous Cell Carcinoma Diagnosis and Prognosis Markers by Unique DNA Methylation and Gene Expression Profiles. Wang W; Wang S; Chu X; Liu H; Xiang M J Comput Biol; 2020 Jul; 27(7):1041-1054. PubMed ID: 31710242 [TBL] [Abstract][Full Text] [Related]
12. A fibroblast-associated signature predicts prognosis and immunotherapy in esophageal squamous cell cancer. Ren Q; Zhang P; Zhang X; Feng Y; Li L; Lin H; Yu Y Front Immunol; 2023; 14():1199040. PubMed ID: 37313409 [TBL] [Abstract][Full Text] [Related]
13. [Data mining of esophageal squamous cell carcinoma from The Cancer Genome Atlas database]. He SY; Wang XB; Jiao YC Zhonghua Zhong Liu Za Zhi; 2018 Jul; 40(7):517-522. PubMed ID: 30060360 [No Abstract] [Full Text] [Related]
14. The prognostic role of FZD6 in esophageal squamous cell carcinoma patients. Zhang J; Wang JL; Zhang CY; Ma YF; Zhao R; Wang YY Clin Transl Oncol; 2020 Jul; 22(7):1172-1179. PubMed ID: 31748958 [TBL] [Abstract][Full Text] [Related]
15. A Ten-N Huang W; Li G; Wang Z; Zhou L; Yin X; Yang T; Wang P; Teng X; Feng Y; Yu H Front Oncol; 2020; 10():567931. PubMed ID: 33680913 [TBL] [Abstract][Full Text] [Related]
16. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Wang J; Qin D; Tao Z; Wang B; Xie Y; Wang Y; Li B; Cao J; Qiao X; Zhong S; Hu X Front Immunol; 2022; 13():1056932. PubMed ID: 36479114 [TBL] [Abstract][Full Text] [Related]
17. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Lv J; Wang J; Shang X; Liu F; Guo S Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33258470 [TBL] [Abstract][Full Text] [Related]
18. Establishment of a risk model by integrating hypoxia genes in predicting prognosis of esophageal squamous cell carcinoma. Xiao W; Tang P; Sui Z; Han Y; Zhao G; Wu X; Yang Y; Zhu N; Gong L; Yu Z; Zhang H Cancer Med; 2023 Jan; 12(2):2117-2133. PubMed ID: 35789548 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive Analysis of PD-L1 Expression, Immune Infiltrates, and m6A RNA Methylation Regulators in Esophageal Squamous Cell Carcinoma. Guo W; Tan F; Huai Q; Wang Z; Shao F; Zhang G; Yang Z; Li R; Xue Q; Gao S; He J Front Immunol; 2021; 12():669750. PubMed ID: 34054840 [TBL] [Abstract][Full Text] [Related]
20. Identification of crucial miRNAs and genes in esophageal squamous cell carcinoma by miRNA-mRNA integrated analysis. Zhong X; Huang G; Ma Q; Liao H; Liu C; Pu W; Xu L; Cai Y; Guo X Medicine (Baltimore); 2019 Jul; 98(27):e16269. PubMed ID: 31277149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]