BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 33194335)

  • 21. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments.
    Chen Y; Jiang Y; Huang H; Mou L; Ru J; Zhao J; Xiao S
    Sci Total Environ; 2018 Oct; 637-638():1400-1412. PubMed ID: 29801233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metagenomic analysis of microbial community and function involved in cd-contaminated soil.
    Feng G; Xie T; Wang X; Bai J; Tang L; Zhao H; Wei W; Wang M; Zhao Y
    BMC Microbiol; 2018 Feb; 18(1):11. PubMed ID: 29439665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage.
    Liu J; Li C; Jing J; Zhao P; Luo Z; Cao M; Ma Z; Jia T; Chai B
    Water Res; 2018 Apr; 133():99-109. PubMed ID: 29367051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbes participated in macrophyte leaf litters decomposition in freshwater habitat.
    Zhao B; Xing P; Wu QL
    FEMS Microbiol Ecol; 2017 Oct; 93(10):. PubMed ID: 28961908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of litter quantity on the soil bacteria community during the decomposition of
    Zeng Q; Liu Y; An S
    PeerJ; 2017; 5():e3777. PubMed ID: 28894648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China.
    Tong J; Miaowen C; Juhui J; Jinxian L; Baofeng C
    Sci Total Environ; 2017 Jan; 574():881-888. PubMed ID: 27665448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations.
    Zampieri Bdel B; Pinto AB; Schultz L; de Oliveira MA; de Oliveira AJ
    Microb Ecol; 2016 Oct; 72(3):582-94. PubMed ID: 27480227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems.
    López-Mondéjar R; Zühlke D; Becher D; Riedel K; Baldrian P
    Sci Rep; 2016 Apr; 6():25279. PubMed ID: 27125755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community.
    Brabcová V; Nováková M; Davidová A; Baldrian P
    New Phytol; 2016 Jun; 210(4):1369-81. PubMed ID: 26832073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term litter decomposition controlled by manganese redox cycling.
    Keiluweit M; Nico P; Harmon ME; Mao J; Pett-Ridge J; Kleber M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5253-60. PubMed ID: 26372954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass].
    Fang X; Qin Y; Li X; Wang L; Wang T; Zhu M; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):864-9. PubMed ID: 20954385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QIIME allows analysis of high-throughput community sequencing data.
    Caporaso JG; Kuczynski J; Stombaugh J; Bittinger K; Bushman FD; Costello EK; Fierer N; Peña AG; Goodrich JK; Gordon JI; Huttley GA; Kelley ST; Knights D; Koenig JE; Ley RE; Lozupone CA; McDonald D; Muegge BD; Pirrung M; Reeder J; Sevinsky JR; Turnbaugh PJ; Walters WA; Widmann J; Yatsunenko T; Zaneveld J; Knight R
    Nat Methods; 2010 May; 7(5):335-6. PubMed ID: 20383131
    [No Abstract]   [Full Text] [Related]  

  • 33. Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.).
    Paz-Alberto AM; Sigua GC; Baui BG; Prudente JA
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):498-504. PubMed ID: 18062482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterization of rhizosphere-competent bacteria of wheat.
    Juhnke ME; Mathre DE; Sands DC
    Appl Environ Microbiol; 1987 Dec; 53(12):2793-9. PubMed ID: 16347496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Living in a fungal world: impact of fungi on soil bacterial niche development.
    Boer Wd; Folman LB; Summerbell RC; Boddy L
    FEMS Microbiol Rev; 2005 Sep; 29(4):795-811. PubMed ID: 16102603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial community characteristics and enzyme activities in
    Jia T; Guo T; Chai B
    PeerJ; 2020; 8():e9612. PubMed ID: 33194335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]     [New Search]
    of 2.