These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 33194345)

  • 1. Advances and complications of regenerative medicine in diabetes therapy.
    Brovkina O; Dashinimaev E
    PeerJ; 2020; 8():e9746. PubMed ID: 33194345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the Generation of Functional β-cells from Induced Pluripotent Stem Cells As a Cure for Diabetes Mellitus.
    Kalra K; Chandrabose ST; Ramasamy TS; Kasim NHBA
    Curr Drug Targets; 2018; 19(13):1463-1477. PubMed ID: 29874998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury.
    Kramer AS; Harvey AR; Plant GW; Hodgetts SI
    Cell Transplant; 2013; 22(4):571-617. PubMed ID: 22944020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of induced pluripotent stem cells for bone regeneration: current progress and prospects.
    Teng S; Liu C; Krettek C; Jagodzinski M
    Tissue Eng Part B Rev; 2014 Aug; 20(4):328-39. PubMed ID: 24102431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration.
    El Khatib MM; Ohmine S; Jacobus EJ; Tonne JM; Morsy SG; Holditch SJ; Schreiber CA; Uetsuka K; Fusaki N; Wigle DA; Terzic A; Kudva YC; Ikeda Y
    Stem Cells Transl Med; 2016 May; 5(5):694-702. PubMed ID: 26987352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Induced Pluripotent Stem Cells in the Curative Treatment of Diabetes and Potential Impediments Ahead.
    Dadheech N; James Shapiro AM
    Adv Exp Med Biol; 2019; 1144():25-35. PubMed ID: 30569414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes.
    Iacovides D; Rizki G; Lapathitis G; Strati K
    Stem Cell Res Ther; 2016 Jul; 7(1):98. PubMed ID: 27473056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine.
    Revilla A; González C; Iriondo A; Fernández B; Prieto C; Marín C; Liste I
    J Tissue Eng Regen Med; 2016 Nov; 10(11):893-907. PubMed ID: 25758460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo.
    Hu C; Li L
    Stem Cell Res Ther; 2019 Jan; 10(1):13. PubMed ID: 30635065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Breakthrough in research on pluripotent stem cells and their application in medicine].
    Valdimarsdóttir G; Richter A
    Laeknabladid; 2015 Dec; 101(12):581-6. PubMed ID: 26656400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation.
    Cho YD; Kim KH; Lee YM; Ku Y; Seol YJ
    J Periodontal Implant Sci; 2022 Dec; 52(6):437-454. PubMed ID: 36468465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A promising approach to iPSC-based cell therapy for diabetic wound treatment: direct lineage reprogramming.
    Li S; Li Q
    Mol Cell Endocrinol; 2014 Aug; 393(1-2):8-15. PubMed ID: 24911883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
    Liu Y; Deng W
    Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iPSCs, aging and age-related diseases.
    Isobe K; Cheng Z; Nishio N; Suganya T; Tanaka Y; Ito S
    N Biotechnol; 2014 Sep; 31(5):411-21. PubMed ID: 24784583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling.
    Iglesias-García O; Pelacho B; Prósper F
    J Mol Cell Cardiol; 2013 Sep; 62():43-50. PubMed ID: 23643470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translating the Potential of Stem Cells for Diabetes Mellitus: Challenges and Opportunities.
    Masoud MS; Qasim M; Ali MU
    Curr Stem Cell Res Ther; 2017; 12(8):611-623. PubMed ID: 28831915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospects of induced pluripotent stem cell technology in regenerative medicine.
    Zhang F; Citra F; Wang DA
    Tissue Eng Part B Rev; 2011 Apr; 17(2):115-24. PubMed ID: 21210760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine.
    Skalova S; Svadlakova T; Shaikh Qureshi WM; Dev K; Mokry J
    Int J Mol Sci; 2015 Feb; 16(2):4043-67. PubMed ID: 25689424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pluripotent stem cell derivation and differentiation toward cardiac muscle: novel techniques and advances in patent literature.
    Quattrocelli M; Thorrez L; Sampaolesi M
    Recent Pat Drug Deliv Formul; 2013 Apr; 7(1):18-28. PubMed ID: 22974171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming Current Dilemma in Cartilage Regeneration: Will Direct Conversion Provide a Breakthrough?
    Im GI; Kim TK
    Tissue Eng Regen Med; 2020 Dec; 17(6):829-834. PubMed ID: 33098546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.