These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33194711)

  • 1. A Review on Application of Deep Learning Algorithms in External Beam Radiotherapy Automated Treatment Planning.
    Wang M; Zhang Q; Lam S; Cai J; Yang R
    Front Oncol; 2020; 10():580919. PubMed ID: 33194711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future.
    Wang C; Zhu X; Hong JC; Zheng D
    Technol Cancer Res Treat; 2019 Jan; 18():1533033819873922. PubMed ID: 31495281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity-modulated radiotherapy: current status and issues of interest.
    Intensity Modulated Radiation Therapy Collaborative Working Group
    Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):880-914. PubMed ID: 11704310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning.
    Li X; Zhang J; Sheng Y; Chang Y; Yin FF; Ge Y; Wu QJ; Wang C
    Phys Med Biol; 2020 Sep; 65(17):175014. PubMed ID: 32663813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Emergence of Artificial Intelligence within Radiation Oncology Treatment Planning.
    Netherton TJ; Cardenas CE; Rhee DJ; Court LE; Beadle BM
    Oncology; 2021; 99(2):124-134. PubMed ID: 33352552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated treatment planning of postmastectomy radiotherapy.
    Kisling K; Zhang L; Shaitelman SF; Anderson D; Thebe T; Yang J; Balter PA; Howell RM; Jhingran A; Schmeler K; Simonds H; du Toit M; Trauernicht C; Burger H; Botha K; Joubert N; Beadle BM; Court L
    Med Phys; 2019 Sep; 46(9):3767-3775. PubMed ID: 31077593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic learning-based beam angle selection for thoracic IMRT.
    Amit G; Purdie TG; Levinshtein A; Hope AJ; Lindsay P; Marshall A; Jaffray DA; Pekar V
    Med Phys; 2015 Apr; 42(4):1992-2005. PubMed ID: 25832090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of a deep reinforcement learning network for dose-volume-constrained treatment planning in prostate cancer intensity modulated radiotherapy.
    Sprouts D; Gao Y; Wang C; Jia X; Shen C; Chi Y
    Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 35523130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer.
    Shen C; Gonzalez Y; Klages P; Qin N; Jung H; Chen L; Nguyen D; Jiang SB; Jia X
    Phys Med Biol; 2019 May; 64(11):115013. PubMed ID: 30978709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique.
    Fan J; Wang J; Chen Z; Hu C; Zhang Z; Hu W
    Med Phys; 2019 Jan; 46(1):370-381. PubMed ID: 30383300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward automatic beam angle selection for pencil-beam scanning proton liver treatments: A deep learning-based approach.
    Kaderka R; Liu KC; Liu L; VanderStraeten R; Liu TL; Lee KM; Tu YE; MacEwan I; Simpson D; Urbanic J; Chang C
    Med Phys; 2022 Jul; 49(7):4293-4304. PubMed ID: 35488864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence in radiotherapy: a technological review.
    Sheng K
    Front Med; 2020 Aug; 14(4):431-449. PubMed ID: 32728877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge-based planning for intensity-modulated radiation therapy: A review of data-driven approaches.
    Ge Y; Wu QJ
    Med Phys; 2019 Jun; 46(6):2760-2775. PubMed ID: 30963580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of artificial intelligence in veterinary radiation oncology.
    Leary D; Basran PS
    Vet Radiol Ultrasound; 2022 Dec; 63 Suppl 1():903-912. PubMed ID: 36514233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients.
    Kadoya N; Kimura Y; Tozuka R; Tanaka S; Arai K; Katsuta Y; Shimizu H; Sugai Y; Yamamoto T; Umezawa R; Jingu K
    J Radiat Res; 2023 Sep; 64(5):842-849. PubMed ID: 37607667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence-Based Automated Treatment Planning of Postmastectomy Volumetric Modulated Arc Radiotherapy.
    Jiang S; Xue Y; Li M; Yang C; Zhang D; Wang Q; Wang J; Chen J; You J; Yuan Z; Wang X; Zhang X; Wang W
    Front Oncol; 2022; 12():871871. PubMed ID: 35547874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast VMAT planning for prostate radiotherapy: dosimetric validation of a deep learning-based initial segment generation method.
    Ni Y; Chen S; Hibbard L; Voet P
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35830832
    [No Abstract]   [Full Text] [Related]  

  • 18. Performance stability evaluation of atlas-based machine learning radiation therapy treatment planning in prostate cancer.
    Conroy L; Khalifa A; Berlin A; McIntosh C; Purdie TG
    Phys Med Biol; 2021 Jun; 66(13):. PubMed ID: 34156354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of deep learning to auto-delineation of target volumes and organs at risk in radiotherapy.
    Chen M; Wu S; Zhao W; Zhou Y; Zhou Y; Wang G
    Cancer Radiother; 2022 May; 26(3):494-501. PubMed ID: 34711488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated 4π radiotherapy treatment planning with evolving knowledge-base.
    Landers A; O'Connor D; Ruan D; Sheng K
    Med Phys; 2019 Sep; 46(9):3833-3843. PubMed ID: 31233619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.