These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33195133)

  • 1. Genetic Cell-Surface Modification for Optimized Foam Fractionation.
    Blesken CC; Bator I; Eberlein C; Heipieper HJ; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():572892. PubMed ID: 33195133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling Foam Fractionation and Foam Adsorption for Enhanced Biosurfactant Synthesis and Recovery.
    Blesken CC; Strümpfler T; Tiso T; Blank LM
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33353027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM
    Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor.
    Beuker J; Steier A; Wittgens A; Rosenau F; Henkel M; Hausmann R
    AMB Express; 2016 Mar; 6(1):11. PubMed ID: 26860613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of rhamnolipids by integrated foam adsorption in a bioreactor system.
    Anic I; Apolonia I; Franco P; Wichmann R
    AMB Express; 2018 Jul; 8(1):122. PubMed ID: 30043199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using
    Tiso T; Ihling N; Kubicki S; Biselli A; Schonhoff A; Bator I; Thies S; Karmainski T; Kruth S; Willenbrink AL; Loeschcke A; Zapp P; Jupke A; Jaeger KE; Büchs J; Blank LM
    Front Bioeng Biotechnol; 2020; 8():976. PubMed ID: 32974309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating metabolic demand as an engineering strategy in
    Tiso T; Sabelhaus P; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Metab Eng Commun; 2016 Dec; 3():234-244. PubMed ID: 29142825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Killing Two Birds With One Stone - Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process.
    Bator I; Karmainski T; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():899. PubMed ID: 32850747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid.
    Germer A; Tiso T; Müller C; Behrens B; Vosse C; Scholz K; Froning M; Hayen H; Blank LM
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and Production of Rhamnolipid from
    Haloi S; Medhi T
    Indian J Microbiol; 2022 Sep; 62(3):434-440. PubMed ID: 35974913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.
    Anic I; Nath A; Franco P; Wichmann R
    J Biotechnol; 2017 Sep; 258():181-189. PubMed ID: 28723386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient production of rhamnolipid in P. putida using a novel sacB-based system and mixed carbon source.
    Pang AP; Wang Y; Zhang T; Gao F; Shen JD; Huang L; Zhou J; Zhang B; Liu ZQ; Zheng YG
    Bioresour Technol; 2024 Feb; 394():130220. PubMed ID: 38109979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel membrane stirrer system enables foam-free biosurfactant production.
    Bongartz P; Karmainski T; Meyer M; Linkhorst J; Tiso T; Blank LM; Wessling M
    Biotechnol Bioeng; 2023 May; 120(5):1269-1287. PubMed ID: 36705321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhamnolipids--next generation surfactants?
    Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R
    J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa.
    Heyd M; Franzreb M; Berensmeier S
    Biotechnol Prog; 2011; 27(3):706-16. PubMed ID: 21567991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling an Electroactive
    Askitosari TD; Berger C; Tiso T; Harnisch F; Blank LM; Rosenbaum MA
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33322018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant Production of
    Widberger J; Wittgens A; Klaunig S; Krämer M; Kissmann AK; Höfele F; Baur T; Weil T; Henkel M; Hausmann R; Bengelsdorf FR; Eikmanns BJ; Dürre P; Rosenau F
    Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production.
    Müller MM; Hausmann R
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):251-64. PubMed ID: 21667084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.