These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 33195154)

  • 41. A Multiplex MoClo Toolkit for Extensive and Flexible Engineering of
    Shaw WM; Khalil AS; Ellis T
    ACS Synth Biol; 2023 Nov; 12(11):3393-3405. PubMed ID: 37930278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-Yeast Engineering of a Bacterial Genome Using CRISPR/Cas9.
    Tsarmpopoulos I; Gourgues G; Blanchard A; Vashee S; Jores J; Lartigue C; Sirand-Pugnet P
    ACS Synth Biol; 2016 Jan; 5(1):104-9. PubMed ID: 26592087
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advances in yeast genome engineering.
    David F; Siewers V
    FEMS Yeast Res; 2015 Feb; 15(1):1-14. PubMed ID: 25154295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A systems-level approach for metabolic engineering of yeast cell factories.
    Kim IK; Roldão A; Siewers V; Nielsen J
    FEMS Yeast Res; 2012 Mar; 12(2):228-48. PubMed ID: 22188344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.
    Lian J; Mishra S; Zhao H
    Metab Eng; 2018 Nov; 50():85-108. PubMed ID: 29702275
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Highly Characterized Synthetic Landing Pad System for Precise Multicopy Gene Integration in Yeast.
    Bourgeois L; Pyne ME; Martin VJJ
    ACS Synth Biol; 2018 Nov; 7(11):2675-2685. PubMed ID: 30372609
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR/Cas9 Assisted Multiplex Genome Editing Technique in Escherichia coli.
    Feng X; Zhao D; Zhang X; Ding X; Bi C
    Biotechnol J; 2018 Sep; 13(9):e1700604. PubMed ID: 29790644
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites.
    Wang G; Kell DB; Borodina I
    Essays Biochem; 2021 Jul; 65(2):277-291. PubMed ID: 34061167
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 51. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture.
    Chen K; Wang Y; Zhang R; Zhang H; Gao C
    Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system.
    Cobb RE; Wang Y; Zhao H
    ACS Synth Biol; 2015 Jun; 4(6):723-8. PubMed ID: 25458909
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.
    Wang Y; Cobb RE; Zhao H
    Methods Enzymol; 2016; 575():271-84. PubMed ID: 27417933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production.
    Roointan A; Morowvat MH
    Biotechnol Genet Eng Rev; 2016; 32(1-2):74-91. PubMed ID: 28052722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 57. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains.
    Roggenkamp E; Giersch RM; Wedeman E; Eaton M; Turnquist E; Schrock MN; Alkotami L; Jirakittisonthon T; Schluter-Pascua SE; Bayne GH; Wasko C; Halloran M; Finnigan GC
    Front Microbiol; 2017; 8():1773. PubMed ID: 28979241
    [No Abstract]   [Full Text] [Related]  

  • 58. Biological Parts for
    Rajkumar AS; Varela JA; Juergens H; Daran JG; Morrissey JP
    Front Bioeng Biotechnol; 2019; 7():97. PubMed ID: 31134195
    [No Abstract]   [Full Text] [Related]  

  • 59. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration.
    Lian J; Jin R; Zhao H
    Biotechnol Bioeng; 2016 Nov; 113(11):2462-73. PubMed ID: 27159405
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Construction of a Stable and Temperature-Responsive Yeast Cell Factory for Crocetin Biosynthesis Using CRISPR-Cas9.
    Liu T; Dong C; Qi M; Zhang B; Huang L; Xu Z; Lian J
    Front Bioeng Biotechnol; 2020; 8():653. PubMed ID: 32695754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.