These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33195158)

  • 1. Applications of Polydopamine-Modified Scaffolds in the Peripheral Nerve Tissue Engineering.
    Yan J; Wu R; Liao S; Jiang M; Qian Y
    Front Bioeng Biotechnol; 2020; 8():590998. PubMed ID: 33195158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer Scaffolds for Biomedical Applications in Peripheral Nerve Reconstruction.
    Zhang M; Li C; Zhou LP; Pi W; Zhang PX
    Molecules; 2021 May; 26(9):. PubMed ID: 34063072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustained release of exosomes loaded into polydopamine-modified chitin conduits promotes peripheral nerve regeneration in rats.
    Li C; Liu SY; Zhang M; Pi W; Wang B; Li QC; Lu CF; Zhang PX
    Neural Regen Res; 2022 Sep; 17(9):2050-2057. PubMed ID: 35142696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical review on polydopamine surface-modified scaffolds in musculoskeletal regeneration.
    Tolabi H; Bakhtiary N; Sayadi S; Tamaddon M; Ghorbani F; Boccaccini AR; Liu C
    Front Bioeng Biotechnol; 2022; 10():1008360. PubMed ID: 36466324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research Progress on Polydopamine Nanoparticles for Tissue Engineering.
    Tang Y; Tan Y; Lin K; Zhu M
    Front Chem; 2021; 9():727123. PubMed ID: 34552912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of cell adhesion and osteoconductivity in bone substitutes modified by polydopamine.
    Mahnavi A; Shahriari-Khalaji M; Hosseinpour B; Ahangarian M; Aidun A; Bungau S; Hassan SSU
    Front Bioeng Biotechnol; 2022; 10():1057699. PubMed ID: 36727042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.
    Hu Y; Dan W; Xiong S; Kang Y; Dhinakar A; Wu J; Gu Z
    Acta Biomater; 2017 Jan; 47():135-148. PubMed ID: 27744068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes?
    Oprych KM; Whitby RL; Mikhalovsky SV; Tomlins P; Adu J
    Adv Healthc Mater; 2016 Jun; 5(11):1253-71. PubMed ID: 27027923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering.
    Gu Y; Li Z; Huang J; Wang H; Gu X; Gu J
    J Tissue Eng Regen Med; 2017 Aug; 11(8):2250-2260. PubMed ID: 26777754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Tissue-Engineered Nerve Conduits Seeded with Neurons Derived from Hair-Follicle Neural Crest Stem Cells.
    Liu F; Lin H; Zhang C
    Methods Mol Biol; 2016; 1453():33-8. PubMed ID: 27431244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of process parameters on polydopamine coatings employed in tissue engineering applications.
    Sarkari S; Khajehmohammadi M; Davari N; Li D; Yu B
    Front Bioeng Biotechnol; 2022; 10():1005413. PubMed ID: 36172013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering.
    Yang K; Lee JS; Kim J; Lee YB; Shin H; Um SH; Kim JB; Park KI; Lee H; Cho SW
    Biomaterials; 2012 Oct; 33(29):6952-64. PubMed ID: 22809643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous Organic Materials in Tissue Engineering: Recent Advances and Applications for Severed Facial Nerve Injury Repair.
    Sun J; Cao W; Pan S; He L; Ji D; Zheng N; Sun X; Wang R; Niu Y
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminin-modified and aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyethylene oxide nanofibrous nerve conduits promote peripheral nerve regeneration.
    Zhang XF; Liu HX; Ortiz LS; Xiao ZD; Huang NP
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e627-e636. PubMed ID: 27865067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffolds for peripheral nerve repair and reconstruction.
    Yi S; Xu L; Gu X
    Exp Neurol; 2019 Sep; 319():112761. PubMed ID: 29772248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mussel-inspired polydopamine-mediated surface modification of freeze-cast poly (ε-caprolactone) scaffolds for bone tissue engineering applications.
    Ghorbani F; Zamanian A; Sahranavard M
    Biomed Tech (Berl); 2020 May; 65(3):273-287. PubMed ID: 31655791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury.
    Chen S; Zhao Y; Yan X; Zhang L; Li G; Yang Y
    J Biomed Mater Res A; 2019 Jun; 107(6):1273-1283. PubMed ID: 30706639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regenerative effect of adipose tissue-derived stem cells transplantation using nerve conduit therapy on sciatic nerve injury in rats.
    Liu BS; Yang YC; Shen CC
    J Tissue Eng Regen Med; 2014 May; 8(5):337-50. PubMed ID: 22552954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.