These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33195399)

  • 1. A Coarse-Grained Methodology Identifies Intrinsic Mechanisms That Dissociate Interacting Protein Pairs.
    Abdizadeh H; Jalalypour F; Atilgan AR; Atilgan C
    Front Mol Biosci; 2020; 7():210. PubMed ID: 33195399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of conformational change in proteins by single-residue perturbations.
    Atilgan C; Gerek ZN; Ozkan SB; Atilgan AR
    Biophys J; 2010 Aug; 99(3):933-43. PubMed ID: 20682272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting long term cooperativity and specific modulators of receptor interactions in human transferrin from dynamics within a single microstate.
    Abdizadeh H; Atilgan C
    Phys Chem Chem Phys; 2016 Mar; 18(11):7916-26. PubMed ID: 26955866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin.
    Atilgan AR; Aykut AO; Atilgan C
    J Chem Phys; 2011 Oct; 135(15):155102. PubMed ID: 22029336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model.
    Zheng W; Tekpinar M
    BMC Struct Biol; 2009 Jul; 9():45. PubMed ID: 19591676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of large proteins through hierarchical levels of coarse-grained structures.
    Doruker P; Jernigan RL; Bahar I
    J Comput Chem; 2002 Jan; 23(1):119-27. PubMed ID: 11913377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape complementarity of protein-protein complexes at multiple resolutions.
    Zhang Q; Sanner M; Olson AJ
    Proteins; 2009 May; 75(2):453-67. PubMed ID: 18837463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility.
    Chen H; Sun Y; Shen Y
    Proteins; 2017 Mar; 85(3):544-556. PubMed ID: 27862345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of key residues for protein conformational transition using elastic network model.
    Su JG; Xu XJ; Li CH; Chen WZ; Wang CX
    J Chem Phys; 2011 Nov; 135(17):174101. PubMed ID: 22070286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics.
    Kim JI; Na S; Eom K
    J Comput Chem; 2011 Jan; 32(1):161-9. PubMed ID: 20645300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding.
    Gunasekaran K; Nussinov R
    J Mol Biol; 2007 Jan; 365(1):257-73. PubMed ID: 17059826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase.
    Keskin O
    J Biomol Struct Dyn; 2002 Dec; 20(3):333-45. PubMed ID: 12437372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model.
    Tekpinar M; Zheng W
    Proteins; 2010 Aug; 78(11):2469-81. PubMed ID: 20602461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Extent of Cooperativity of Protein Motions Observed with Elastic Network Models Is Similar for Atomic and Coarser-Grained Models.
    Sen TZ; Feng Y; Garcia JV; Kloczkowski A; Jernigan RL
    J Chem Theory Comput; 2006; 2(3):696-704. PubMed ID: 17710199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional structures of the free and antigen-bound Fab from monoclonal antilysozyme antibody HyHEL-63(,).
    Li Y; Li H; Smith-Gill SJ; Mariuzza RA
    Biochemistry; 2000 May; 39(21):6296-309. PubMed ID: 10828942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward decrypting the allosteric mechanism of the ryanodine receptor based on coarse-grained structural and dynamic modeling.
    Zheng W
    Proteins; 2015 Dec; 83(12):2307-18. PubMed ID: 26492335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How well can we understand large-scale protein motions using normal modes of elastic network models?
    Yang L; Song G; Jernigan RL
    Biophys J; 2007 Aug; 93(3):920-9. PubMed ID: 17483178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterisation and functional significance of transient protein-protein interactions.
    Nooren IM; Thornton JM
    J Mol Biol; 2003 Jan; 325(5):991-1018. PubMed ID: 12527304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary Conserved Positions Define Protein Conformational Diversity.
    SaldaƱo TE; Monzon AM; Parisi G; Fernandez-Alberti S
    PLoS Comput Biol; 2016 Mar; 12(3):e1004775. PubMed ID: 27008419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.