These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33195440)

  • 21. Molecular flavin catalysts for C-H functionalisation and derivatisation of dehydroamino acids.
    Rehpenn A; Walter A; Storch G
    Chem Sci; 2022 Dec; 13(47):14151-14156. PubMed ID: 36540823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity.
    Miura R
    Chem Rec; 2001; 1(3):183-94. PubMed ID: 11895118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Reversible, Charge-Induced Intramolecular C4a-S-Cysteinyl-Flavin in Choline Oxidase Variant S101C.
    Su D; Yuan H; Gadda G
    Biochemistry; 2017 Dec; 56(51):6677-6690. PubMed ID: 29190076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of tryptophanyl and tyrosyl residues of flavoproteins in binding with flavin coenzymes. X-ray structural studies using model complexes.
    Inoue M; Shibata M; Kondo Y; Ishida T
    Biochemistry; 1981 May; 20(10):2936-45. PubMed ID: 7248260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites.
    Koder RL; Walsh JD; Pometun MS; Dutton PL; Wittebort RJ; Miller AF
    J Am Chem Soc; 2006 Nov; 128(47):15200-8. PubMed ID: 17117871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and biochemical characterization of recombinant wild type and a C30A mutant of trimethylamine dehydrogenase from methylophilus methylotrophus (sp. W(3)A(1)).
    Trickey P; Basran J; Lian LY; Chen Z; Barton JD; Sutcliffe MJ; Scrutton NS; Mathews FS
    Biochemistry; 2000 Jul; 39(26):7678-88. PubMed ID: 10869173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neutral versus charged species in enzyme catalysis. Classical and free energy barriers for oxygen atom transfer from C4a-hydroperoxyflavin to dimethyl sulfide.
    Canepa C; Bach RD; Dmitrenko O
    J Org Chem; 2002 Nov; 67(24):8653-61. PubMed ID: 12444653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction.
    Zafred D; Steiner B; Teufelberger AR; Hromic A; Karplus PA; Schofield CJ; Wallner S; Macheroux P
    FEBS J; 2015 Aug; 282(16):3060-74. PubMed ID: 25619330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First-principles molecular dynamics investigation of the D-amino acid oxidative half-reaction catalyzed by the flavoenzyme D-amino acid oxidase.
    Tilocca A; Gamba A; Vanoni MA; Fois E
    Biochemistry; 2002 Dec; 41(48):14111-21. PubMed ID: 12450374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flavin-N5-oxide: A new, catalytic motif in flavoenzymology.
    Adak S; Begley TP
    Arch Biochem Biophys; 2017 Oct; 632():4-10. PubMed ID: 28784589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dibenzothiophene Catabolism Proceeds via a Flavin-N5-oxide Intermediate.
    Adak S; Begley TP
    J Am Chem Soc; 2016 May; 138(20):6424-6. PubMed ID: 27120486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.
    Golden E; Yu LJ; Meilleur F; Blakeley MP; Duff AP; Karton A; Vrielink A
    Sci Rep; 2017 Jan; 7():40517. PubMed ID: 28098177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flavin-N5-oxide intermediates in dibenzothiophene, uracil, and hexachlorobenzene catabolism.
    Adak S; Begley TP
    Methods Enzymol; 2019; 620():455-468. PubMed ID: 31072497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of a high-potential flavin analogue and its use as an active site probe with clostridial flavodoxin.
    Raibekas AA; Ramsey AJ; Jorns MS
    Biochemistry; 1993 Apr; 32(16):4420-9. PubMed ID: 8476868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes.
    Romero E; Gómez Castellanos JR; Gadda G; Fraaije MW; Mattevi A
    Chem Rev; 2018 Feb; 118(4):1742-1769. PubMed ID: 29323892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of pH on oxidation-reduction potentials of 8 alpha-N-imidazole-substituted flavins.
    Williamson G; Edmondson DE
    Biochemistry; 1985 Dec; 24(26):7790-7. PubMed ID: 4092039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
    Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT
    Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hexachlorobenzene Catabolism Involves a Nucleophilic Aromatic Substitution and Flavin-N5-Oxide Formation.
    Adak S; Begley TP
    Biochemistry; 2019 Mar; 58(9):1181-1183. PubMed ID: 30702280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for flavin movement in the function of p-hydroxybenzoate hydroxylase from studies of the mutant Arg220Lys.
    Moran GR; Entsch B; Palfey BA; Ballou DP
    Biochemistry; 1996 Jul; 35(28):9278-85. PubMed ID: 8703933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.