BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33195941)

  • 1. Comprehensive Analysis of Low Molecular Weight Serum Proteome Enrichment for Mass Spectrometric Studies.
    Das L; Murthy V; Varma AK
    ACS Omega; 2020 Nov; 5(44):28877-28888. PubMed ID: 33195941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of low-abundant serum proteins by albumin/immunoglobulin G immunoaffinity depletion under partly denaturing conditions.
    Huang HL; Stasyk T; Morandell S; Mogg M; Schreiber M; Feuerstein I; Huck CW; Stecher G; Bonn GK; Huber LA
    Electrophoresis; 2005 Jul; 26(14):2843-9. PubMed ID: 15971195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.
    Chen L; Zhai L; Li Y; Li N; Zhang C; Ping L; Chang L; Wu J; Li X; Shi D; Xu P
    PLoS One; 2015; 10(2):e0115862. PubMed ID: 25723528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis.
    Kay R; Barton C; Ratcliffe L; Matharoo-Ball B; Brown P; Roberts J; Teale P; Creaser C
    Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3255-60. PubMed ID: 18803344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the low molecular weight human serum proteome.
    Tirumalai RS; Chan KC; Prieto DA; Issaq HJ; Conrads TP; Veenstra TD
    Mol Cell Proteomics; 2003 Oct; 2(10):1096-103. PubMed ID: 12917320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic evaluation of species-independent serum pre-fractionation strategies revealed cost-effective methods to reduce proteome complexity.
    De A; Dutta TK; Ali MA; Behera P; Gali JM
    Anal Biochem; 2019 Nov; 584():113388. PubMed ID: 31404526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples.
    Björhall K; Miliotis T; Davidsson P
    Proteomics; 2005 Jan; 5(1):307-17. PubMed ID: 15619298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the Low-Molecular-Weight Human Plasma Peptidome.
    Greening DW; Simpson RJ
    Methods Mol Biol; 2017; 1619():63-79. PubMed ID: 28674878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-Based Protein Profiling in Plants.
    Vélez-Bermúdez IC; Wen TN; Lan P; Schmidt W
    Methods Mol Biol; 2016; 1450():213-21. PubMed ID: 27424757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ.
    Solari FA; Kollipara L; Sickmann A; Zahedi RP
    Methods Mol Biol; 2016; 1394():25-41. PubMed ID: 26700039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics technologies for the global identification and quantification of proteins.
    Brewis IA; Brennan P
    Adv Protein Chem Struct Biol; 2010; 80():1-44. PubMed ID: 21109216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid, economical, and reproducible method for human serum delipidation and albumin and IgG removal for proteomic analysis.
    Fu Q; Bovenkamp DE; Van Eyk JE
    Methods Mol Biol; 2007; 357():365-71. PubMed ID: 17172702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining the acidic serum proteome utilizing off-gel isoelectric focusing and label free quantitative liquid chromatography mass spectrometry.
    Smith J; Davey G; Polom K; Roviello F; Bones J
    J Chromatogr A; 2018 Sep; 1566():32-43. PubMed ID: 29945787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis.
    Wang YY; Cheng P; Chan DW
    Proteomics; 2003 Mar; 3(3):243-8. PubMed ID: 12627376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of depletion versus equalization for reducing high-abundance proteins in human serum.
    Fernández C; Santos HM; Ruíz-Romero C; Blanco FJ; Capelo-Martínez JL
    Electrophoresis; 2011 Nov; 32(21):2966-74. PubMed ID: 21997478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research.
    Wiese S; Reidegeld KA; Meyer HE; Warscheid B
    Proteomics; 2007 Feb; 7(3):340-50. PubMed ID: 17177251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of three different enrichment strategies for serum low molecular weight protein identification using shotgun proteomics approach.
    Capriotti AL; Caruso G; Cavaliere C; Piovesana S; Samperi R; Laganà A
    Anal Chim Acta; 2012 Aug; 740():58-65. PubMed ID: 22840651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences among techniques for high-abundant protein depletion.
    Zolotarjova N; Martosella J; Nicol G; Bailey J; Boyes BE; Barrett WC
    Proteomics; 2005 Aug; 5(13):3304-13. PubMed ID: 16052628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Molecular-Weight Plasma Proteome Analysis Using Top-Down Mass Spectrometry.
    Cheon DH; Yang EG; Lee C; Lee JE
    Methods Mol Biol; 2017; 1619():103-117. PubMed ID: 28674880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis.
    Sachon E; Mohammed S; Bache N; Jensen ON
    Rapid Commun Mass Spectrom; 2006; 20(7):1127-34. PubMed ID: 16521170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.