BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33196077)

  • 1. Fluorescent proteins for in vivo imaging, where's the biliverdin?
    Montecinos-Franjola F; Lin JY; Rodriguez EA
    Biochem Soc Trans; 2020 Dec; 48(6):2657-2667. PubMed ID: 33196077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein.
    Rodriguez EA; Tran GN; Gross LA; Crisp JL; Shu X; Lin JY; Tsien RY
    Nat Methods; 2016 Sep; 13(9):763-9. PubMed ID: 27479328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bright and stable near-infrared fluorescent protein for in vivo imaging.
    Filonov GS; Piatkevich KD; Ting LM; Zhang J; Kim K; Verkhusha VV
    Nat Biotechnol; 2011 Jul; 29(8):757-61. PubMed ID: 21765402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a biliverdin-bound phycobiliprotein: Interdependence of oligomerization and chromophorylation.
    Fuenzalida-Werner JP; Janowski R; Mishra K; Weidenfeld I; Niessing D; Ntziachristos V; Stiel AC
    J Struct Biol; 2018 Dec; 204(3):519-522. PubMed ID: 30287387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monomeric Far-red and Near-infrared Fluorescent Biliproteins of Ultrahigh Brightness.
    Jiang XX; Hou YN; Lu LW; Zhao KH
    Chembiochem; 2024 Jun; 25(11):e202400068. PubMed ID: 38623786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared Fluorescent Proteins and Their Applications.
    Karasev MM; Stepanenko OV; Rumyantsev KA; Turoverov KK; Verkhusha VV
    Biochemistry (Mosc); 2019 Jan; 84(Suppl 1):S32-S50. PubMed ID: 31213194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Far-Red and Near-Infrared Fluorescent Phycobiliproteins with Excellent Brightness and Photostability.
    Hou YN; Ding WL; Jiang XX; Hu JL; Tan ZZ; Zhao KH
    Chembiochem; 2022 Sep; 23(18):e202200267. PubMed ID: 35811374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of small monomeric and highly bright near-infrared fluorescent proteins.
    Li XD; Tan ZZ; Ding WL; Hou YN; Kong CD; Zhao BQ; Zhao KH
    Biochim Biophys Acta Mol Cell Res; 2019 Oct; 1866(10):1608-1617. PubMed ID: 31295502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bright near-infrared fluorescence bio-labeling with a biliprotein triad.
    Hou YN; Ding WL; Jiang SP; Miao D; Tan ZZ; Hu JL; Scheer H; Zhao KH
    Biochim Biophys Acta Mol Cell Res; 2019 Feb; 1866(2):277-284. PubMed ID: 30471307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetically encoded far-red fluorescent calcium ion biosensor derived from a biliverdin-binding protein.
    Hashizume R; Fujii H; Mehta S; Ota K; Qian Y; Zhu W; Drobizhev M; Nasu Y; Zhang J; Bito H; Campbell RE
    Protein Sci; 2022 Oct; 31(10):e4440. PubMed ID: 36173169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Protein Design and Directed Evolution to Monomerize a Bright Near-Infrared Fluorescent Protein.
    Hu X; Xu Y; Yi J; Wang C; Zhu Z; Yue T; Zhang H; Wang X; Wu F; Xue L; Bai L; Liu H; Chen Q
    ACS Synth Biol; 2024 Apr; 13(4):1177-1190. PubMed ID: 38552148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultra-red fluorescent biosensor for highly sensitive and rapid detection of biliverdin.
    Zhu X; Feng S; Jiang Z; Zhang H; Wang Y; Yang H; Wang Z
    Anal Chim Acta; 2021 Aug; 1174():338709. PubMed ID: 34247733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals.
    Piatkevich KD; Subach FV; Verkhusha VV
    Chem Soc Rev; 2013 Apr; 42(8):3441-52. PubMed ID: 23361376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small ultra-red fluorescent protein nanoparticles as exogenous probes for noninvasive tumor imaging in vivo.
    An F; Chen N; Conlon WJ; Hachey JS; Xin J; Aras O; Rodriguez EA; Ting R
    Int J Biol Macromol; 2020 Jun; 153():100-106. PubMed ID: 32105698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved fluorescent phytochromes for in situ imaging.
    Nagano S; Sadeghi M; Balke J; Fleck M; Heckmann N; Psakis G; Alexiev U
    Sci Rep; 2022 Apr; 12(1):5587. PubMed ID: 35379835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Characterization of a Biliverdin-Binding Near-Infrared Fluorescent Protein From the Serpin Superfamily.
    Manoilov KY; Ghosh A; Almo SC; Verkhusha VV
    J Mol Biol; 2022 Jan; 434(2):167359. PubMed ID: 34798132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Evolution of Fluorescent Proteins in Bacteria.
    Mattson S; Tran GN; Rodriguez EA
    Methods Mol Biol; 2023; 2564():75-97. PubMed ID: 36107338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome.
    Piatkevich KD; Subach FV; Verkhusha VV
    Nat Commun; 2013; 4():2153. PubMed ID: 23842578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red fluorescent protein from cyanobacteriochrome chromophorylated with phycocyanobilin and biliverdin.
    Ma Q; Lan DM; Shao AN; Li YH; Zhang XY
    Anal Biochem; 2022 Apr; 642():114557. PubMed ID: 35092720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion.
    Kuwasaki Y; Miyake K; Fushimi K; Takeda Y; Ueda Y; Nakajima T; Ikeuchi M; Sato M; Narikawa R
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.