These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 33196077)
41. Very Bright Phycoerythrobilin Chromophore for Fluorescence Biolabeling. Hou YN; Ding WL; Hu JL; Jiang XX; Tan ZZ; Zhao KH Chembiochem; 2019 Nov; 20(21):2777-2783. PubMed ID: 31145526 [TBL] [Abstract][Full Text] [Related]
42. Development of bright red-shifted miRFP704nano using structural analysis of miRFPnano proteins. Oliinyk OS; Pletnev S; Baloban M; Verkhusha VV Protein Sci; 2023 Aug; 32(8):e4709. PubMed ID: 37347539 [TBL] [Abstract][Full Text] [Related]
43. How to Increase Brightness of Near-Infrared Fluorescent Proteins in Mammalian Cells. Shemetov AA; Oliinyk OS; Verkhusha VV Cell Chem Biol; 2017 Jun; 24(6):758-766.e3. PubMed ID: 28602760 [TBL] [Abstract][Full Text] [Related]
44. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Yu D; Gustafson WC; Han C; Lafaye C; Noirclerc-Savoye M; Ge WP; Thayer DA; Huang H; Kornberg TB; Royant A; Jan LY; Jan YN; Weiss WA; Shu X Nat Commun; 2014 May; 5():3626. PubMed ID: 24832154 [TBL] [Abstract][Full Text] [Related]
45. A high-throughput biliverdin assay using infrared fluorescence. Berlec A; Štrukelj B J Vet Diagn Invest; 2014 Jul; 26(4):521-526. PubMed ID: 24903635 [TBL] [Abstract][Full Text] [Related]
46. Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin. Fushimi K; Miyazaki T; Kuwasaki Y; Nakajima T; Yamamoto T; Suzuki K; Ueda Y; Miyake K; Takeda Y; Choi JH; Kawagishi H; Park EY; Ikeuchi M; Sato M; Narikawa R Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8301-8309. PubMed ID: 30948637 [TBL] [Abstract][Full Text] [Related]
47. Effects of reverse genetic mutations on the spectral and photochemical behavior of a photoactivatable fluorescent protein PAiRFP1. Hassan F; Khan FI; Song H; Lai D; Juan F Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117807. PubMed ID: 31806482 [TBL] [Abstract][Full Text] [Related]
48. A knot in the protein structure - probing the near-infrared fluorescent protein iRFP designed from a bacterial phytochrome. Stepanenko OV; Bublikov GS; Stepanenko OV; Shcherbakova DM; Verkhusha VV; Turoverov KK; Kuznetsova IM FEBS J; 2014 May; 281(9):2284-98. PubMed ID: 24628916 [TBL] [Abstract][Full Text] [Related]
50. Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore. Stepanenko OV; Stepanenko OV; Shpironok OG; Fonin AV; Kuznetsova IM; Turoverov KK Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31810174 [TBL] [Abstract][Full Text] [Related]
51. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics. Hontani Y; Shcherbakova DM; Baloban M; Zhu J; Verkhusha VV; Kennis JT Sci Rep; 2016 Nov; 6():37362. PubMed ID: 27857208 [TBL] [Abstract][Full Text] [Related]
52. GAF-CaMP3-sfGFP, An Enhanced Version of the Near-Infrared Genetically Encoded Positive Phytochrome-Based Calcium Indicator for the Visualization of Neuronal Activity. Subach OM; Subach FV Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32961791 [TBL] [Abstract][Full Text] [Related]
53. DEVELOPMENT OF SINGLE-DOMAIN NEAR-INFRARED FLUORESCENT PROTEIN GAF-FP BASED ON BACTERIAL PHYTOCHROME. Rumyantsev KA; Shcherbakova DM; Zaharova NI; Verhusha VV; Turoverov KK Tsitologiia; 2016; 58(10):744-54. PubMed ID: 30198695 [TBL] [Abstract][Full Text] [Related]
55. Biliverdin reduction by cyanobacterial phycocyanobilin:ferredoxin oxidoreductase (PcyA) proceeds via linear tetrapyrrole radical intermediates. Tu SL; Gunn A; Toney MD; Britt RD; Lagarias JC J Am Chem Soc; 2004 Jul; 126(28):8682-93. PubMed ID: 15250720 [TBL] [Abstract][Full Text] [Related]
56. Water-soluble hybrid nanoclusters with extra bright and photostable emissions: a new tool for biological imaging. Makarava N; Parfenov A; Baskakov IV Biophys J; 2005 Jul; 89(1):572-80. PubMed ID: 15833997 [TBL] [Abstract][Full Text] [Related]
57. Redesigning the Coumarin Scaffold into Small Bright Fluorophores with Far-Red to Near-Infrared Emission and Large Stokes Shifts Useful for Cell Imaging. Gandioso A; Bresolí-Obach R; Nin-Hill A; Bosch M; Palau M; Galindo A; Contreras S; Rovira A; Rovira C; Nonell S; Marchán V J Org Chem; 2018 Feb; 83(3):1185-1195. PubMed ID: 29283264 [TBL] [Abstract][Full Text] [Related]
58. mPlum-IFP 1.4 fluorescent fusion protein may display Förster resonance energy transfer associated properties that can be used for near-infrared based reporter gene imaging. Lin LT; Wang BS; Chen JC; Liu CH; Chou C; Chiu SJ; Chang WY; Liu RS; Allen Chang C; Lee YJ J Biomed Opt; 2013 Dec; 18(12):126013. PubMed ID: 24343444 [TBL] [Abstract][Full Text] [Related]
59. UV-trained and metal-enhanced fluorescence of biliverdin and biliverdin nanoparticles. Fathi P; Roslend A; Mehta K; Moitra P; Zhang K; Pan D Nanoscale; 2021 Mar; 13(9):4785-4798. PubMed ID: 33434263 [TBL] [Abstract][Full Text] [Related]
60. Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. Schluchter WM; Glazer AN J Biol Chem; 1997 May; 272(21):13562-9. PubMed ID: 9153203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]