These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33196124)

  • 1. A unique porin meditates iron-selective transport through cyanobacterial outer membranes.
    Qiu GW; Jiang HB; Lis H; Li ZK; Deng B; Shang JL; Sun CY; Keren N; Qiu BS
    Environ Microbiol; 2021 Jan; 23(1):376-390. PubMed ID: 33196124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outer Membrane Iron Uptake Pathways in the Model Cyanobacterium Synechocystis sp. Strain PCC 6803.
    Qiu GW; Lou WJ; Sun CY; Yang N; Li ZK; Li DL; Zang SS; Fu FX; Hutchins DA; Jiang HB; Qiu BS
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30076192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake.
    Jiang HB; Lou WJ; Ke WT; Song WY; Price NM; Qiu BS
    ISME J; 2015 Feb; 9(2):297-309. PubMed ID: 25012898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity and Evolution of Iron Uptake Pathways in Marine Cyanobacteria from the Perspective of the Coastal Strain
    Yong CW; Deng B; Liu LM; Wang XW; Jiang HB
    Appl Environ Microbiol; 2023 Jan; 89(1):e0173222. PubMed ID: 36533965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium.
    Kranzler C; Lis H; Shaked Y; Keren N
    Environ Microbiol; 2011 Nov; 13(11):2990-9. PubMed ID: 21906223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability.
    Kowata H; Tochigi S; Takahashi H; Kojima S
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28696278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria.
    Kranzler C; Lis H; Finkel OM; Schmetterer G; Shaked Y; Keren N
    ISME J; 2014 Feb; 8(2):409-17. PubMed ID: 24088625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TonB-Dependent Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.
    Babykin MM; Obando TSA; Zinchenko VV
    Curr Microbiol; 2018 Feb; 75(2):117-123. PubMed ID: 28900692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of the coping strategy in an OMP homozygous knockout mutant of Synechocystis 6803 defective in iron uptake.
    Agarwal R
    Arch Microbiol; 2022 Jun; 204(7):358. PubMed ID: 35657498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cluster of Five Genes Essential for the Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.
    Obando S TA; Babykin MM; Zinchenko VV
    Curr Microbiol; 2018 Sep; 75(9):1165-1173. PubMed ID: 29785634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.
    Kranzler C; Kessler N; Keren N; Shaked Y
    Environ Microbiol; 2016 Dec; 18(12):5101-5111. PubMed ID: 27516103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sll1263, a unique cation diffusion facilitator protein that promotes iron uptake in the cyanobacterium Synechocystis sp. Strain PCC 6803.
    Jiang HB; Lou WJ; Du HY; Price NM; Qiu BS
    Plant Cell Physiol; 2012 Aug; 53(8):1404-17. PubMed ID: 22685083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an iron permease, cFTR1, in cyanobacteria involved in the iron reduction/re-oxidation uptake pathway.
    Xu N; Qiu GW; Lou WJ; Li ZK; Jiang HB; Price NM; Qiu BS
    Environ Microbiol; 2016 Dec; 18(12):5005-5017. PubMed ID: 27450384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of porins in iron uptake by Mycobacterium smegmatis.
    Jones CM; Niederweis M
    J Bacteriol; 2010 Dec; 192(24):6411-7. PubMed ID: 20952578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron transport-mediated drug delivery using mixed-ligand siderophore-beta-lactam conjugates.
    Ghosh A; Ghosh M; Niu C; Malouin F; Moellmann U; Miller MJ
    Chem Biol; 1996 Dec; 3(12):1011-9. PubMed ID: 9000006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120.
    Rudolf M; Kranzler C; Lis H; Margulis K; Stevanovic M; Keren N; Schleiff E
    Mol Microbiol; 2015 Aug; 97(3):577-88. PubMed ID: 25943160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of the genes coding for two porins in the unicellular cyanobacterium Synechococcus PCC 6301.
    Hansel A; Pattus F; Jürgens UJ; Tadros MH
    Biochim Biophys Acta; 1998 Jul; 1399(1):31-9. PubMed ID: 9714719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803.
    Mills LA; McCormick AJ; Lea-Smith DJ
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32149336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional role of PilA in iron acquisition in the cyanobacterium Synechocystis sp. PCC 6803.
    Lamb JJ; Hill RE; Eaton-Rye JJ; Hohmann-Marriott MF
    PLoS One; 2014; 9(8):e105761. PubMed ID: 25157828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Special roles for efflux systems in iron homeostasis of non-siderophore-producing cyanobacteria.
    Liu LM; Li DL; Deng B; Wang XW; Jiang HB
    Environ Microbiol; 2022 Feb; 24(2):551-565. PubMed ID: 33817959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.