These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33196127)

  • 1. Formation, Structure, and Mechanical Performance of Silk Nanofibrils Produced by Heat-Induced Self-Assembly.
    Xiao Y; Liu Y; Zhang W; Qi P; Ren J; Pei Y; Ling S
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000435. PubMed ID: 33196127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of black rice anthocyanins by self-assembled silk fibroin nanofibrils: Morphology, spectroscopy and thermal protection.
    Ma Z; Jing P
    Int J Biol Macromol; 2020 Mar; 146():1030-1039. PubMed ID: 31730951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of incubation temperature on the self-assembly of regenerated silk fibroin: a study using AFM.
    Zhong J; Liu X; Wei D; Yan J; Wang P; Sun G; He D
    Int J Biol Macromol; 2015 May; 76():195-202. PubMed ID: 25748848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process.
    Bai S; Liu S; Zhang C; Xu W; Lu Q; Han H; Kaplan DL; Zhu H
    Acta Biomater; 2013 Aug; 9(8):7806-13. PubMed ID: 23628774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery.
    Zhou J; Zhang B; Shi L; Zhong J; Zhu J; Yan J; Wang P; Cao C; He D
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21813-21. PubMed ID: 25536875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moderate conformational transition promotes the formation of a self-reinforced highly oriented silk fibroin network structure.
    Shu T; Cui J; Lv Z; Cao L; Ren J; Ling S
    Soft Matter; 2021 Nov; 17(42):9576-9586. PubMed ID: 34642721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.
    Zhao Y; Zhu ZS; Guan J; Wu SJ
    Acta Biomater; 2021 Apr; 125():57-71. PubMed ID: 33601067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip-induced micropatterning of silk fibroin protein using in situ solution atomic force microscopy.
    Zhong J; Ma M; Zhou J; Wei D; Yan Z; He D
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):737-46. PubMed ID: 23276203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk Reconstitution Disrupts Fibroin Self-Assembly.
    Koebley SR; Thorpe D; Pang P; Chrisochoides P; Greving I; Vollrath F; Schniepp HC
    Biomacromolecules; 2015 Sep; 16(9):2796-804. PubMed ID: 26284914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures.
    Zhong J; Ma M; Li W; Zhou J; Yan Z; He D
    Biopolymers; 2014 Dec; 101(12):1181-92. PubMed ID: 25088327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer.
    Yoo MK; Kweon HY; Lee KG; Lee HC; Cho CS
    Int J Biol Macromol; 2004 Aug; 34(4):263-70. PubMed ID: 15374683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the flow stability of regenerated silk fibroin aqueous solution.
    Wang H; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2005 Jul; 36(1-2):66-70. PubMed ID: 15916801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast self-assembly of microporous silk fibroin membranes on liquid surface.
    Chen W; Li F; Chen L; Zhang Y; Zhang T; Wang T
    Int J Biol Macromol; 2020 Aug; 156():633-639. PubMed ID: 32289429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of irregular unit, GAAS, on the secondary structure of Bombyx mori silk fibroin studied with 13C CP/MAS NMR and wide-angle X-ray scattering.
    Asakura T; Sugino R; Okumura T; Nakazawa Y
    Protein Sci; 2002 Aug; 11(8):1873-7. PubMed ID: 12142441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2.
    Feng XX; Zhang LL; Chen JY; Guo YH; Zhang HP; Jia CI
    Int J Biol Macromol; 2007 Jan; 40(2):105-11. PubMed ID: 16860861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable Production of Natural Silk Nanofibrils for Reinforcing Silk-Based Orthopedic Screws.
    Yan S; He L; Hai AM; Hu Z; You R; Zhang Q; Kaplan DL
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor.
    Wu C; Duan Y; Yu L; Hu Y; Zhao C; Ji C; Guo X; Zhang S; Dai X; Ma P; Wang Q; Ling S; Yang X; Dai Q
    Nat Commun; 2024 May; 15(1):4643. PubMed ID: 38821959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk layering as studied with neutron reflectivity.
    Wallet B; Kharlampieva E; Campbell-Proszowska K; Kozlovskaya V; Malak S; Ankner JF; Kaplan DL; Tsukruk VV
    Langmuir; 2012 Aug; 28(31):11481-9. PubMed ID: 22697306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-TiO2 induced secondary structural transition of silk fibroin studied by two-dimensional Fourier-transform infrared correlation spectroscopy and Raman spectroscopy.
    Feng XX; Guo YH; Chen JY; Zhang JC
    J Biomater Sci Polym Ed; 2007; 18(11):1443-56. PubMed ID: 17961326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.