These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 33196219)
21. Exergy of passive states: Waste energy after ergotropy extraction. Kamin FH; Salimi S; Santos AC Phys Rev E; 2021 Sep; 104(3-1):034134. PubMed ID: 34654149 [TBL] [Abstract][Full Text] [Related]
22. Relating the Resource Theories of Entanglement and Quantum Coherence. Chitambar E; Hsieh MH Phys Rev Lett; 2016 Jul; 117(2):020402. PubMed ID: 27447493 [TBL] [Abstract][Full Text] [Related]
23. Unifying paradigms of quantum refrigeration: Fundamental limits of cooling and associated work costs. Clivaz F; Silva R; Haack G; Brask JB; Brunner N; Huber M Phys Rev E; 2019 Oct; 100(4-1):042130. PubMed ID: 31770926 [TBL] [Abstract][Full Text] [Related]
24. Explanation of the Gibbs paradox within the framework of quantum thermodynamics. Allahverdyan AE; Nieuwenhuizen TM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066119. PubMed ID: 16906926 [TBL] [Abstract][Full Text] [Related]
25. Independence of work and entropy for equal-energetic finite quantum systems: Passive-state energy as an entanglement quantifier. Alimuddin M; Guha T; Parashar P Phys Rev E; 2020 Jul; 102(1-1):012145. PubMed ID: 32795079 [TBL] [Abstract][Full Text] [Related]
26. Structure of the Resource Theory of Quantum Coherence. Streltsov A; Rana S; Boes P; Eisert J Phys Rev Lett; 2017 Oct; 119(14):140402. PubMed ID: 29053284 [TBL] [Abstract][Full Text] [Related]
27. Fluctuation-dissipation relations for thermodynamic distillation processes. Biswas T; Junior AO; Horodecki M; Korzekwa K Phys Rev E; 2022 May; 105(5-1):054127. PubMed ID: 35706282 [TBL] [Abstract][Full Text] [Related]
28. Energetics and quantumness of Fano coherence generation. Donati L; Cataliotti FS; Gherardini S Sci Rep; 2024 Aug; 14(1):20145. PubMed ID: 39209887 [TBL] [Abstract][Full Text] [Related]
29. Curl flux, coherence, and population landscape of molecular systems: nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics. Zhang Z; Wang J J Chem Phys; 2014 Jun; 140(24):245101. PubMed ID: 24985680 [TBL] [Abstract][Full Text] [Related]
30. Coherence and measurement in quantum thermodynamics. Kammerlander P; Anders J Sci Rep; 2016 Feb; 6():22174. PubMed ID: 26916503 [TBL] [Abstract][Full Text] [Related]
31. Arbitrary Amplification of Quantum Coherence in Asymptotic and Catalytic Transformation. Shiraishi N; Takagi R Phys Rev Lett; 2024 May; 132(18):180202. PubMed ID: 38759178 [TBL] [Abstract][Full Text] [Related]
32. Quantifying the Coherence between Coherent States. Tan KC; Volkoff T; Kwon H; Jeong H Phys Rev Lett; 2017 Nov; 119(19):190405. PubMed ID: 29219483 [TBL] [Abstract][Full Text] [Related]
33. Entanglement, Coherence, and Extractable Work in Quantum Batteries. Shi HL; Ding S; Wan QK; Wang XH; Yang WL Phys Rev Lett; 2022 Sep; 129(13):130602. PubMed ID: 36206414 [TBL] [Abstract][Full Text] [Related]
34. Measuring Quantum Coherence with Entanglement. Streltsov A; Singh U; Dhar HS; Bera MN; Adesso G Phys Rev Lett; 2015 Jul; 115(2):020403. PubMed ID: 26207452 [TBL] [Abstract][Full Text] [Related]
35. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Gelbwaser-Klimovsky D; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684 [TBL] [Abstract][Full Text] [Related]
36. Nonthermal Quantum Channels as a Thermodynamical Resource. Navascués M; García-Pintos LP Phys Rev Lett; 2015 Jul; 115(1):010405. PubMed ID: 26182086 [TBL] [Abstract][Full Text] [Related]