These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33196243)

  • 1. Shock Response of Full Density Nanopolycrystalline Diamond.
    Katagiri K; Ozaki N; Umeda Y; Irifune T; Kamimura N; Miyanishi K; Sano T; Sekine T; Kodama R
    Phys Rev Lett; 2020 Oct; 125(18):185701. PubMed ID: 33196243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic Deformation and Strengthening Mechanisms of Nanopolycrystalline Diamond.
    Wang Y; Shi F; Gasc J; Ohfuji H; Wen B; Yu T; Officer T; Nishiyama N; Shinmei T; Irifune T
    ACS Nano; 2021 May; 15(5):8283-8294. PubMed ID: 33929826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahard diamond indenter prepared from nanopolycrystalline diamond.
    Sumiya H; Harano K; Irifune T
    Rev Sci Instrum; 2008 May; 79(5):056102. PubMed ID: 18513095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition to a virtually incompressible oxide phase at a shock pressure of 120 GPa (1.2 Mbar): Gd3Ga5O12.
    Mashimo T; Chau R; Zhang Y; Kobayoshi T; Sekine T; Fukuoka K; Syono Y; Kodama M; Nellis WJ
    Phys Rev Lett; 2006 Mar; 96(10):105504. PubMed ID: 16605758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa.
    Li J; Zhou X; Li J; Wu Q; Cai L; Dai C
    Rev Sci Instrum; 2012 May; 83(5):053902. PubMed ID: 22667628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of Body-Centered Cubic Gold and Melting under Shock Compression.
    Briggs R; Coppari F; Gorman MG; Smith RF; Tracy SJ; Coleman AL; Fernandez-Pañella A; Millot M; Eggert JH; Fratanduono DE
    Phys Rev Lett; 2019 Jul; 123(4):045701. PubMed ID: 31491279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-shock compression of diamond and evidence of a negative-slope melting curve.
    Brygoo S; Henry E; Loubeyre P; Eggert J; Koenig M; Loupias B; Benuzzi-Mounaix A; Rabec Le Gloahec M
    Nat Mater; 2007 Apr; 6(4):274-7. PubMed ID: 17384637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock Compression of Liquid Deuterium up to 1 TPa.
    Fernandez-Pañella A; Millot M; Fratanduono DE; Desjarlais MP; Hamel S; Marshall MC; Erskine DJ; Sterne PA; Haan S; Boehly TR; Collins GW; Eggert JH; Celliers PM
    Phys Rev Lett; 2019 Jun; 122(25):255702. PubMed ID: 31347873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Study on Tension Behaviors of Sub-10 nm NanoPolycrystalline Cu-Ta Alloy.
    Li W; Wang X; Gao L; Lu Y; Wang W
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31783475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jones-Wilkins-Lee Unreacted and Reaction Product Equations of State for Overdriven Detonations in Octogen- and Triaminotrinitrobenzene-Based Plastic-Bonded Explosives.
    Tarver CM
    J Phys Chem A; 2020 Feb; 124(7):1399-1408. PubMed ID: 31967469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermophysical properties of liquid carbon dioxide under shock compressions: quantum molecular dynamic simulations.
    Wang C; Zhang P
    J Chem Phys; 2010 Oct; 133(13):134503. PubMed ID: 20942542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter.
    Sumiya H; Hamaki K; Harano K
    Rev Sci Instrum; 2018 May; 89(5):056102. PubMed ID: 29864810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-Shock Compression Pathways from Diamond to BC8 Carbon.
    Shi J; Liang Z; Wang J; Pan S; Ding C; Wang Y; Wang HT; Xing D; Sun J
    Phys Rev Lett; 2023 Oct; 131(14):146101. PubMed ID: 37862650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shock compression of deuterium near 100 GPa pressures.
    Nellis WJ
    Phys Rev Lett; 2002 Oct; 89(16):165502. PubMed ID: 12398734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of warm dense polystyrene plasmas along the principal Hugoniot.
    Hu SX; Boehly TR; Collins LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063104. PubMed ID: 25019901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-shock compression of magnesium oxide in the warm-dense-matter regime.
    Miyanishi K; Tange Y; Ozaki N; Kimura T; Sano T; Sakawa Y; Tsuchiya T; Kodama R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023103. PubMed ID: 26382531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shock compressing diamond to a conducting fluid.
    Bradley DK; Eggert JH; Hicks DG; Celliers PM; Moon SJ; Cauble RC; Collins GW
    Phys Rev Lett; 2004 Nov; 93(19):195506. PubMed ID: 15600850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating off-Hugoniot states using multi-layer ring-up targets.
    McGonegle D; Heighway PG; Sliwa M; Bolme CA; Comley AJ; Dresselhaus-Marais LE; Higginbotham A; Poole AJ; McBride EE; Nagler B; Nam I; Seaberg MH; Remington BA; Rudd RE; Wehrenberg CE; Wark JS
    Sci Rep; 2020 Aug; 10(1):13172. PubMed ID: 32764631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock compression of a fifth period element: liquid xenon to 840 GPa.
    Root S; Magyar RJ; Carpenter JH; Hanson DL; Mattsson TR
    Phys Rev Lett; 2010 Aug; 105(8):085501. PubMed ID: 20868109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of Shock Wave in Nanoscale Porous Nickel at Pressures up to 7 GPa.
    Dolgoborodov A; Rostilov T; Ananev S; Ziborov V; Grishin L; Kuskov M; Zhigach A
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.