These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33196243)

  • 21. Hugoniot data for helium in the ionization regime.
    Eggert J; Brygoo S; Loubeyre P; McWilliams RS; Celliers PM; Hicks DG; Boehly TR; Jeanloz R; Collins GW
    Phys Rev Lett; 2008 Mar; 100(12):124503. PubMed ID: 18517873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.
    Kraus D; Ravasio A; Gauthier M; Gericke DO; Vorberger J; Frydrych S; Helfrich J; Fletcher LB; Schaumann G; Nagler B; Barbrel B; Bachmann B; Gamboa EJ; Göde S; Granados E; Gregori G; Lee HJ; Neumayer P; Schumaker W; Döppner T; Falcone RW; Glenzer SH; Roth M
    Nat Commun; 2016 Mar; 7():10970. PubMed ID: 26972122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.
    Zheng J; Chen QF; Gu YJ; Chen ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066406. PubMed ID: 23368058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.
    Khanolkar GR; Rauls MB; Kelly JP; Graeve OA; Hodge AM; Eliasson V
    Sci Rep; 2016 Mar; 6():22568. PubMed ID: 26932846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shock compression response of forsterite above 250 GPa.
    Sekine T; Ozaki N; Miyanishi K; Asaumi Y; Kimura T; Albertazzi B; Sato Y; Sakawa Y; Sano T; Sugita S; Matsui T; Kodama R
    Sci Adv; 2016 Aug; 2(8):e1600157. PubMed ID: 27493993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. P-ρ-T measurements of H2O up to 260 GPa under laser-driven shock loading.
    Kimura T; Ozaki N; Sano T; Okuchi T; Sano T; Shimizu K; Miyanishi K; Terai T; Kakeshita T; Sakawa Y; Kodama R
    J Chem Phys; 2015 Apr; 142(16):164504. PubMed ID: 25933771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental validation for the quasi-shear wave behavior of LiF single crystal along a low-symmetry orientation under uniaxial shock loading.
    Liu Q; Xia P; Yang X; Zhao F
    J Phys Condens Matter; 2021 Jun; 33(29):. PubMed ID: 34103458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decomposition of γ-cyclotrimethylene trinitramine (γ-RDX): relevance for shock wave initiation.
    Dreger ZA; Gupta YM
    J Phys Chem A; 2012 Aug; 116(34):8713-7. PubMed ID: 22873636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining Kohn-Sham and orbital-free density-functional theory for Hugoniot calculations to extreme pressures.
    Sheppard D; Kress JD; Crockett S; Collins LA; Desjarlais MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063314. PubMed ID: 25615229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative computational study of coarse-grained and all-atom water models in shock Hugoniot states.
    Min SH; Berkowitz ML
    J Chem Phys; 2018 Apr; 148(14):144504. PubMed ID: 29655327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading.
    Hong X; Duffy TS; Ehm L; Weidner DJ
    J Phys Condens Matter; 2015 Dec; 27(48):485303. PubMed ID: 26570982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Melting of iron at the physical conditions of the Earth's core.
    Nguyen JH; Holmes NC
    Nature; 2004 Jan; 427(6972):339-42. PubMed ID: 14737164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical Study of Shocked Formic Acid: Born-Oppenheimer MD Calculations of the Shock Hugoniot and Early-Stage Chemistry.
    Rice BM; Byrd EF
    J Phys Chem B; 2016 Mar; 120(8):1711-9. PubMed ID: 26654191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface structure on diamond foils generated by spatially nonuniform laser irradiation.
    Kato H; Nagatomo H; Nakai M; Sakaiya T; Terasaki H; Kondo T; Hironaka Y; Shimizu K; Shigemori K
    Sci Rep; 2020 Jun; 10(1):9017. PubMed ID: 32488214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hugoniot equation of state of rock materials under shock compression.
    Zhang QB; Braithwaite CH; Zhao J
    Philos Trans A Math Phys Eng Sci; 2017 Jan; 375(2085):. PubMed ID: 27956506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural occurrence of pure nano-polycrystalline diamond from impact crater.
    Ohfuji H; Irifune T; Litasov KD; Yamashita T; Isobe F; Afanasiev VP; Pokhilenko NP
    Sci Rep; 2015 Oct; 5():14702. PubMed ID: 26424384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.
    Gurrutxaga-Lerma B; Balint DS; Dini D; Eakins DE; Sutton AP
    Phys Rev Lett; 2015 May; 114(17):174301. PubMed ID: 25978237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isentropes and Hugoniot curves for dense hydrogen and deuterium.
    Beule D; Ebeling W; Förster A; Juranek H; Redmer R; Röpke G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):060202. PubMed ID: 11415059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-pressure elastic properties of solid argon to 70 GPa.
    Shimizu H; Tashiro H; Kume T; Sasaki S
    Phys Rev Lett; 2001 May; 86(20):4568-71. PubMed ID: 11384285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa.
    Knudson MD; Hanson DL; Bailey JE; Hall CA; Asay JR
    Phys Rev Lett; 2003 Jan; 90(3):035505. PubMed ID: 12570505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.