These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33196440)

  • 1. Effects of Targeted Assistance and Perturbations on the Relationship Between Pelvis Motion and Step Width in People With Chronic Stroke.
    Reimold NK; Knapp HA; Chesnutt AN; Agne A; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():134-143. PubMed ID: 33196440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a Novel Force-Field to Manipulate the Relationship Between Pelvis Motion and Step Width in Human Walking.
    Heitkamp LN; Stimpson KH; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2051-2058. PubMed ID: 31545734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-stroke deficits in the step-by-step control of paretic step width.
    Stimpson KH; Heitkamp LN; Embry AE; Dean JC
    Gait Posture; 2019 May; 70():136-140. PubMed ID: 30856525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered active control of step width in response to mediolateral leg perturbations while walking.
    Reimold NK; Knapp HA; Henderson RE; Wilson L; Chesnutt AN; Dean JC
    Sci Rep; 2020 Jul; 10(1):12197. PubMed ID: 32699328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between mediolateral step modulation and clinical balance measures in people with chronic stroke.
    Howard KE; Reimold NK; Knight HL; Embry AE; Knapp HA; Agne AA; Jacobs CJ; Dean JC
    Gait Posture; 2024 Mar; 109():9-14. PubMed ID: 38237508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-stroke deficits in mediolateral foot placement accuracy depend on the prescribed walking task.
    Stimpson KH; Embry AE; Dean JC
    J Biomech; 2021 Nov; 128():110738. PubMed ID: 34509909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paretic versus non-paretic stepping responses following pelvis perturbations in walking chronic-stage stroke survivors.
    Haarman JAM; Vlutters M; Olde Keizer RACM; van Asseldonk EHF; Buurke JH; Reenalda J; Rietman JS; van der Kooij H
    J Neuroeng Rehabil; 2017 Oct; 14(1):106. PubMed ID: 29029646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced error facilitates motor learning in weight shift and increases use of the paretic leg during walking at chronic stage after stroke.
    Park SH; Hsu CJ; Dee W; Roth EJ; Rymer WZ; Wu M
    Exp Brain Res; 2021 Nov; 239(11):3327-3341. PubMed ID: 34477919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Pelvic Constraint Force Induces Enhanced Use of the Paretic Leg During Walking in Persons Post-Stroke.
    Park SH; Lin JT; Dee W; Hsu CJ; Roth EJ; Rymer WZ; Wu M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2184-2193. PubMed ID: 32816677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradual adaptation to pelvis perturbation during walking reinforces motor learning of weight shift toward the paretic side in individuals post-stroke.
    Park SH; Hsu CJ; Dee W; Roth EJ; Rymer WZ; Wu M
    Exp Brain Res; 2021 Jun; 239(6):1701-1713. PubMed ID: 33779790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of lateral stabilization on walking performance and balance control in neurologically-intact and post-stroke individuals.
    Frame HB; Finetto C; Dean JC; Neptune RR
    Clin Biomech (Bristol, Avon); 2020 Mar; 73():172-180. PubMed ID: 32004909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor adaptation to lateral pelvis assistance force during treadmill walking in individuals post-stroke.
    Wu M; Hsu CJ; Kim J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():300-303. PubMed ID: 28813835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.
    Hsu CJ; Kim J; Tang R; Roth EJ; Rymer WZ; Wu M
    Clin Neurophysiol; 2017 Oct; 128(10):1915-1922. PubMed ID: 28826022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased motor variability facilitates motor learning in weight shift toward the paretic side during walking in individuals post-stroke.
    Park SH; Hsu CJ; Lin JT; Dee W; Roth EJ; Rymer WZ; Wu M
    Eur J Neurosci; 2021 May; 53(10):3490-3506. PubMed ID: 33783888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated adaptation and de-adaptation to the pelvis resistance force facilitate retention of motor learning in stroke survivors.
    Park SH; Yan S; Dee W; Reed R; Roth EJ; Rymer WZ; Wu M
    J Neurophysiol; 2022 Jun; 127(6):1642-1654. PubMed ID: 35583975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.
    Olenšek A; Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of walking speed on the step-by-step control of step width.
    Stimpson KH; Heitkamp LN; Horne JS; Dean JC
    J Biomech; 2018 Feb; 68():78-83. PubMed ID: 29306549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gait profile score characterises walking performance impairments in young stroke survivors.
    Jarvis HL; Brown SJ; Butterworth C; Jackson K; Clayton A; Walker L; Rees N; Price M; Groenevelt R; Reeves ND
    Gait Posture; 2022 Jan; 91():229-234. PubMed ID: 34741933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does stroke-induced sensorimotor impairment and perturbation intensity affect gait-slip outcomes?
    Dusane S; Gangwani R; Patel P; Bhatt T
    J Biomech; 2021 Mar; 118():110255. PubMed ID: 33581438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swing-phase pelvis perturbation improves dynamic lateral balance during walking in individuals with spinal cord injury.
    Park SH; Lin JT; Dee W; Keefer R; Rymer WZ; Wu M
    Exp Brain Res; 2023 Jan; 241(1):145-160. PubMed ID: 36400862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.