BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33196814)

  • 1. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions.
    Caudron-Herger M; Jansen RE; Wassmer E; Diederichs S
    Nucleic Acids Res; 2021 Jan; 49(D1):D425-D436. PubMed ID: 33196814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refining the pool of RNA-binding domains advances the classification and prediction of RNA-binding proteins.
    Wassmer E; Koppány G; Hermes M; Diederichs S; Caudron-Herger M
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38917322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EuRBPDB: a comprehensive resource for annotation, functional and oncological investigation of eukaryotic RNA binding proteins (RBPs).
    Liao JY; Yang B; Zhang YC; Wang XJ; Ye Y; Peng JW; Yang ZZ; He JH; Zhang Y; Hu K; Lin DC; Yin D
    Nucleic Acids Res; 2020 Jan; 48(D1):D307-D313. PubMed ID: 31598693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RBPMetaDB: a comprehensive annotation of mouse RNA-Seq datasets with perturbations of RNA-binding proteins.
    Li J; Deng SP; Vieira J; Thomas J; Costa V; Tseng CS; Ivankovic F; Ciccodicola A; Yu P
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29931156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATtRACT-a database of RNA-binding proteins and associated motifs.
    Giudice G; Sánchez-Cabo F; Torroja C; Lara-Pezzi E
    Database (Oxford); 2016; 2016():. PubMed ID: 27055826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Prediction and Validation of Novel RNA Binding Proteins and Residues in the Human Proteome.
    Chowdhury S; Zhang J; Kurgan L
    Proteomics; 2018 Nov; 18(21-22):e1800064. PubMed ID: 29806170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring RNA sequence preferences for poorly studied RNA-binding proteins based on co-evolution.
    Yang S; Wang J; Ng RT
    BMC Bioinformatics; 2018 Mar; 19(1):96. PubMed ID: 29529991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs.
    Beckmann BM; Horos R; Fischer B; Castello A; Eichelbaum K; Alleaume AM; Schwarzl T; Curk T; Foehr S; Huber W; Krijgsveld J; Hentze MW
    Nat Commun; 2015 Dec; 6():10127. PubMed ID: 26632259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zooming in on protein-RNA interactions: a multi-level workflow to identify interaction partners.
    Colantoni A; Rupert J; Vandelli A; Tartaglia GG; Zacco E
    Biochem Soc Trans; 2020 Aug; 48(4):1529-1543. PubMed ID: 32820806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction and validation of the unexplored RNA-binding protein atlas of the human proteome.
    Zhao H; Yang Y; Janga SC; Kao CC; Zhou Y
    Proteins; 2014 Apr; 82(4):640-7. PubMed ID: 24123256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonomic approaches to study the RNA-binding proteome.
    Faoro C; Ataide SF
    FEBS Lett; 2014 Oct; 588(20):3649-64. PubMed ID: 25150170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method.
    Bach-Pages M; Homma F; Kourelis J; Kaschani F; Mohammed S; Kaiser M; van der Hoorn RAL; Castello A; Preston GM
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32344669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary analysis of proteome-wide proteomics reveals changes in RNA binding protein-profiles during prostate cancer progression.
    Aikio E; Koivukoski S; Kallio E; Sadeesh N; Niskanen EA; Latonen L
    Cancer Rep (Hoboken); 2023 Oct; 6(10):e1886. PubMed ID: 37591798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells.
    Ignarski M; Rill C; Kaiser RWJ; Kaldirim M; Neuhaus R; Esmaillie R; Li X; Klein C; Bohl K; Petersen M; Frese CK; Höhne M; Atanassov I; Rinschen MM; Höpker K; Schermer B; Benzing T; Dieterich C; Fabretti F; Müller RU
    J Am Soc Nephrol; 2019 Apr; 30(4):564-576. PubMed ID: 30867249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.
    Brannan KW; Jin W; Huelga SC; Banks CA; Gilmore JM; Florens L; Washburn MP; Van Nostrand EL; Pratt GA; Schwinn MK; Daniels DL; Yeo GW
    Mol Cell; 2016 Oct; 64(2):282-293. PubMed ID: 27720645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RBP Image Database: A resource for the systematic characterization of the subcellular distribution properties of human RNA binding proteins.
    Benoit Bouvrette LP; Wang X; Boulais J; Kong J; Syed EU; Blue SM; Zhan L; Olson S; Stanton R; Wei X; Yee B; Van Nostrand EL; Fu XD; Burge CB; Graveley BR; Yeo GW; Lécuyer E
    Nucleic Acids Res; 2023 Jan; 51(D1):D1549-D1557. PubMed ID: 36321651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide survey of putative RNA-binding proteins encoded in the human proteome.
    Ghosh P; Sowdhamini R
    Mol Biosyst; 2016 Feb; 12(2):532-40. PubMed ID: 26675803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.
    Brown AS; Mohanty BK; Howe PH
    PLoS One; 2015; 10(9):e0137696. PubMed ID: 26368004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic antibodies as tools to probe RNA-binding protein function.
    Laver JD; Ancevicius K; Sollazzo P; Westwood JT; Sidhu SS; Lipshitz HD; Smibert CA
    Mol Biosyst; 2012 Jun; 8(6):1650-7. PubMed ID: 22481296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.