BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 33196851)

  • 21. CRISPR/Cas9 in epigenetics studies of health and disease.
    Sar P; Dalai S
    Prog Mol Biol Transl Sci; 2021; 181():309-343. PubMed ID: 34127198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Gene Expression Using dCas9-SunTag Platforms.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2023; 2577():189-195. PubMed ID: 36173574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refining CRISPR-based genome and epigenome editing off-targets.
    Luo Y
    Cell Biol Toxicol; 2019 Aug; 35(4):281-283. PubMed ID: 31227932
    [No Abstract]   [Full Text] [Related]  

  • 24. CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing.
    Breunig CT; Köferle A; Neuner AM; Wiesbeck MF; Baumann V; Stricker SH
    Physiol Rev; 2021 Jan; 101(1):177-211. PubMed ID: 32525760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo epigenome editing and transcriptional modulation using CRISPR technology.
    Lau CH; Suh Y
    Transgenic Res; 2018 Dec; 27(6):489-509. PubMed ID: 30284145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs.
    Pflueger C; Tan D; Swain T; Nguyen T; Pflueger J; Nefzger C; Polo JM; Ford E; Lister R
    Genome Res; 2018 Aug; 28(8):1193-1206. PubMed ID: 29907613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.
    Sen D; Keung AJ
    Methods Mol Biol; 2018; 1767():65-87. PubMed ID: 29524129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technologies for targeting DNA methylation modifications: Basic mechanism and potential application in cancer.
    Wang J; Yang J; Li D; Li J
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188454. PubMed ID: 33075468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants.
    Fal K; Tomkova D; Vachon G; Chabouté ME; Berr A; Carles CC
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review on CRISPR-mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer.
    Chakravarti R; Lenka SK; Gautam A; Singh R; Ravichandiran V; Roy S; Ghosh D
    Curr Drug Targets; 2022; 23(8):836-853. PubMed ID: 35078394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics.
    Nomura W
    Chem Rec; 2018 Dec; 18(12):1717-1726. PubMed ID: 30066981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges.
    Ueda J; Yamazaki T; Funakoshi H
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A versatile reporter system for multiplexed screening of effective epigenome editors.
    Roman Azcona MS; Fang Y; Carusillo A; Cathomen T; Mussolino C
    Nat Protoc; 2020 Oct; 15(10):3410-3440. PubMed ID: 32887975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing.
    Nuñez JK; Chen J; Pommier GC; Cogan JZ; Replogle JM; Adriaens C; Ramadoss GN; Shi Q; Hung KL; Samelson AJ; Pogson AN; Kim JYS; Chung A; Leonetti MD; Chang HY; Kampmann M; Bernstein BE; Hovestadt V; Gilbert LA; Weissman JS
    Cell; 2021 Apr; 184(9):2503-2519.e17. PubMed ID: 33838111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Editing the Epigenome to Tackle Brain Disorders.
    Liu XS; Jaenisch R
    Trends Neurosci; 2019 Dec; 42(12):861-870. PubMed ID: 31706628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Target Discovery for Precision Medicine Using High-Throughput Genome Engineering.
    Guo X; Chitale P; Sanjana NE
    Adv Exp Med Biol; 2017; 1016():123-145. PubMed ID: 29130157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical and Light Inducible Epigenome Editing.
    Zhao W; Wang Y; Liang FS
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32028669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenome editing in cancer: Advances and challenges for potential therapeutic options.
    Lee SW; Frankston CM; Kim J
    Int Rev Cell Mol Biol; 2024; 383():191-230. PubMed ID: 38359969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of super-specific epigenome editing by targeted allele-specific DNA methylation.
    Rajaram N; Kouroukli AG; Bens S; Bashtrykov P; Jeltsch A
    Epigenetics Chromatin; 2023 Oct; 16(1):41. PubMed ID: 37864244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.