These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33197083)

  • 1. Vacancy assisted diffusion on single-atom surface alloys.
    Mahlberg D; Groß A
    Chemphyschem; 2021 Jan; 22(1):29-39. PubMed ID: 33197083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One Decade of Computational Studies on Single-Atom Alloys: Is
    Réocreux R; Stamatakis M
    Acc Chem Res; 2022 Jan; 55(1):87-97. PubMed ID: 34904820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated kinetic Monte Carlo: A case study; vacancy and dumbbell interstitial diffusion traps in concentrated solid solution alloys.
    Ferasat K; Osetsky YN; Barashev AV; Zhang Y; Yao Z; Béland LK
    J Chem Phys; 2020 Aug; 153(7):074109. PubMed ID: 32828101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic Mechanisms of Binary Alloy Surface Segregation from Nanoseconds to Seconds Using Accelerated Dynamics.
    Garza RB; Lee J; Nguyen MH; Garmon A; Perez D; Li M; Yang JC; Henkelman G; Saidi WA
    J Chem Theory Comput; 2022 Jul; 18(7):4447-4455. PubMed ID: 35671511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys.
    Wróbel JS; Nguyen-Manh D; Kurzydłowski KJ; Dudarev SL
    J Phys Condens Matter; 2017 Apr; 29(14):145403. PubMed ID: 28177296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys.
    Nandipati G; Jiang X; Vemuri RS; Mathaudhu S; Rohatgi A
    J Phys Condens Matter; 2018 Jan; 30(3):035903. PubMed ID: 29091585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacancy diffusion and coalescence in graphene directed by defect strain fields.
    Trevethan T; Latham CD; Heggie MI; Briddon PR; Rayson MJ
    Nanoscale; 2014 Mar; 6(5):2978-86. PubMed ID: 24487384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water adsorption on bimetallic PtRu/Pt(111) surface alloys.
    Fischer JM; Mahlberg D; Roman T; Groß A
    Proc Math Phys Eng Sci; 2016 Oct; 472(2194):20160618. PubMed ID: 27843411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics and interdiffusion at the Cu/Ru(0001) interface: density functional calculations.
    Shin J; Vita A; Windu S; Choi JH; Lee SC; Lee JG
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6589-93. PubMed ID: 22121762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time ab initio KMC simulation of the self-assembly and sintering of bimetallic epitaxial nanoclusters: Au + Ag on Ag(100).
    Han Y; Liu DJ; Evans JW
    Nano Lett; 2014 Aug; 14(8):4646-52. PubMed ID: 24959695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Surface Reconstruction of Single-Atom Bimetallic Alloy under
    Liu X; Ao C; Shen X; Wang L; Wang S; Cao L; Zhang W; Dong J; Bao J; Ding T; Zhang L; Yao T
    Nano Lett; 2020 Nov; 20(11):8319-8325. PubMed ID: 33090809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward alcohol synthesis from CO hydrogenation on Cu(111)-supported MoS
    Rawal TB; Le D; Hooshmand Z; Rahman TS
    J Chem Phys; 2021 May; 154(17):174701. PubMed ID: 34241077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles modeling of the highly dynamical surface structure of a MoS
    Wang PY; Chen BA; Lee YC; Chiu CC
    Phys Chem Chem Phys; 2022 Oct; 24(39):24166-24172. PubMed ID: 36168839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic Monte Carlo study of Pt on Au(111) with applications to bimetallic catalysis.
    Zoontjens P; Grochola G; Snook IK; Russo SP
    J Phys Condens Matter; 2011 Jan; 23(1):015302. PubMed ID: 21406822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics driving the short-range order in CuxPd1-x/Ru(0001) monolayer surface alloys.
    Bergbreiter A; Hoster HE; Sakong S; Gross A; Behm RJ
    Phys Chem Chem Phys; 2007 Oct; 9(37):5127-32. PubMed ID: 17878989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First principles insights into the relative stability, electronic and catalytic properties of core-shell, Janus and mixed structural patterns for bimetallic Pd-X nano-alloys (X = Co, Ni, Cu, Rh, Ag, Ir, Pt, Au).
    Datta S; Ghosh A; Saha-Dasgupta T
    Phys Chem Chem Phys; 2023 Feb; 25(6):4667-4679. PubMed ID: 36723207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the reactivity of bimetallic overlayer and surface alloy systems.
    Groß A
    J Phys Condens Matter; 2009 Feb; 21(8):084205. PubMed ID: 21817357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Cu self-diffusion via first nearest neighbour atomic jumps.
    Baibuz E; Vigonski S; Lahtinen J; Zhao J; Jansson V; Zadin V; Djurabekova F
    Data Brief; 2018 Apr; 17():739-743. PubMed ID: 29876431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of surface segregation and ordering in Ni-based bimetallic surface alloys.
    Luan D; Jiang H
    J Chem Phys; 2021 Feb; 154(7):074702. PubMed ID: 33607899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.